Documentation

Mathlib.RingTheory.PowerSeries.Expand

Expand power series #

Given a power series φ, one may replace every occurrence of X i by X i ^ n, for some nonzero natural number n. This operation is called PowerSeries.expand and it is an algebra homomorphism.

Main declaration #

noncomputable def PowerSeries.expand {R : Type u_2} [CommRing R] (p : ) (hp : p 0) :

Expand the power series by a factor of p, so ∑ aₙ xⁿ becomes ∑ aₙ xⁿᵖ.

See also PowerSeries.expand.

Equations
Instances For
    theorem PowerSeries.expand_apply {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (f : PowerSeries R) :
    (expand p hp) f = subst (X ^ p) f
    theorem PowerSeries.expand_C {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (r : R) :
    (expand p hp) (C r) = C r
    theorem PowerSeries.expand_mul_eq_comp {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (q : ) (hq : q 0) :
    expand (p * q) = (expand p hp).comp (expand q hq)
    theorem PowerSeries.expand_mul {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (q : ) (hq : q 0) (φ : PowerSeries R) :
    (expand (p * q) ) φ = (expand p hp) ((expand q hq) φ)
    @[simp]
    theorem PowerSeries.expand_X {R : Type u_2} [CommRing R] (p : ) (hp : p 0) :
    (expand p hp) X = X ^ p
    @[simp]
    theorem PowerSeries.expand_monomial {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (d : ) (r : R) :
    (expand p hp) ((monomial d) r) = (monomial (p * d)) r
    @[simp]
    theorem PowerSeries.expand_one {R : Type u_2} [CommRing R] :
    theorem PowerSeries.expand_one_apply {R : Type u_2} [CommRing R] (f : PowerSeries R) :
    (expand 1 ) f = f
    @[simp]
    theorem PowerSeries.map_expand {R : Type u_2} {S : Type u_3} [CommRing R] [CommRing S] (p : ) (hp : p 0) (f : R →+* S) (φ : PowerSeries R) :
    (map f) ((expand p hp) φ) = (expand p hp) ((map f) φ)
    @[simp]
    theorem PowerSeries.coeff_expand_mul {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (φ : PowerSeries R) (m : ) :
    (coeff (p * m)) ((expand p hp) φ) = (coeff m) φ
    theorem PowerSeries.coeff_expand_of_not_dvd {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (φ : PowerSeries R) {m : } (h : ¬p m) :
    (coeff m) ((expand p hp) φ) = 0
    theorem PowerSeries.support_expand_subset {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (φ : PowerSeries R) :
    Function.support ((expand p hp) φ) (fun (x : Unit →₀ ) => p x) '' Function.support φ
    theorem PowerSeries.support_expand {R : Type u_2} [CommRing R] (p : ) (hp : p 0) (φ : PowerSeries R) :
    Function.support ((expand p hp) φ) = (fun (x : Unit →₀ ) => p x) '' Function.support φ