Expand multivariate power series #
Given a multivariate power series φ, one may replace every occurrence of X i by X i ^ n,
for some nonzero natural number n.
This operation is called MvPowerSeries.expand and it is an algebra homomorphism.
Main declaration #
MvPowerSeries.expand: expand a multi variate power series by a factor of p, so∑ aₙ xⁿbecomes∑ aₙ xⁿᵖ.
@[simp]
theorem
MvPowerSeries.expand_one_apply
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(f : MvPowerSeries σ R)
:
theorem
MvPowerSeries.HasSubst.expand
{σ : Type u_1}
{τ : Type u_2}
{S : Type u_4}
[Finite τ]
[CommRing S]
(p : ℕ)
(hp : p ≠ 0)
{f : σ → MvPowerSeries τ S}
(hf : HasSubst f)
:
HasSubst fun (i : σ) => (MvPowerSeries.expand p hp) (f i)
theorem
MvPowerSeries.expand_comp_substAlgHom
{σ : Type u_1}
{τ : Type u_2}
{S : Type u_4}
[Finite τ]
[CommRing S]
(p : ℕ)
(hp : p ≠ 0)
{f : σ → MvPowerSeries τ S}
(hf : HasSubst f)
:
theorem
MvPowerSeries.expand_substAlgHom
{σ : Type u_1}
{τ : Type u_2}
{S : Type u_4}
[Finite τ]
[CommRing S]
(p : ℕ)
(hp : p ≠ 0)
{f : σ → MvPowerSeries τ S}
(hf : HasSubst f)
{φ : MvPowerSeries σ S}
:
@[simp]
theorem
MvPowerSeries.constantCoeff_expand
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
(φ : MvPowerSeries σ R)
:
theorem
MvPowerSeries.support_expand_subset
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
(φ : MvPowerSeries σ R)
:
theorem
MvPowerSeries.support_expand
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
(φ : MvPowerSeries σ R)
:
@[simp]
theorem
MvPowerSeries.expand_eq_expand
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
{φ : MvPolynomial σ R}
:
For any multivariate polynomial φ, then MvPolynomial.expand p φ and
MvPowerSeries.expand p hp ↑φ coincide.
theorem
MvPowerSeries.trunc'_expand
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
[DecidableEq σ]
{n : σ →₀ ℕ}
(φ : MvPowerSeries σ R)
:
theorem
MvPowerSeries.trunc'_expand_trunc'
{σ : Type u_1}
{R : Type u_3}
[Finite σ]
[CommRing R]
(p : ℕ)
(hp : p ≠ 0)
{n m : σ →₀ ℕ}
(h : n ≤ m)
[DecidableEq σ]
(f : MvPowerSeries σ R)
:
(MvPolynomial.expand p) ((trunc' R n) f) = (trunc' R (p • n)) ↑((MvPolynomial.expand p) ((trunc' R m) f))