Meta properties of essentially of finite type ring homomorphisms #
theorem
RingHom.EssFiniteType.comp
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[CommRing T]
{f : R →+* S}
{g : S →+* T}
(hf : f.EssFiniteType)
(hg : g.EssFiniteType)
:
(g.comp f).EssFiniteType
theorem
RingHom.EssFiniteType.comp_iff
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[CommRing T]
{f : R →+* S}
{g : S →+* T}
(hf : f.EssFiniteType)
:
theorem
RingHom.EssFiniteType.stableUnderComposition :
StableUnderComposition fun {R S : Type u_4} [CommRing R] [CommRing S] => EssFiniteType
theorem
RingHom.EssFiniteType.respectsIso :
RespectsIso fun {R S : Type u_4} [CommRing R] [CommRing S] => EssFiniteType
theorem
RingHom.EssFiniteType.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_4} [CommRing R] [CommRing S] => EssFiniteType
theorem
RingHom.EssFiniteType.holdsForLocalization :
HoldsForLocalization fun {R S : Type u_4} [CommRing R] [CommRing S] => EssFiniteType
theorem
RingHom.EssFiniteType.residueFieldMap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom f]
(hf : f.EssFiniteType)
: