Faithfully flat ring maps #
A ring map f : R →+* S
is faithfully flat if S
is faithfully flat as an R
-algebra. This is
the same as being flat and a surjection on prime spectra.
A ring map f : R →+* S
is faithfully flat if S
is faithfully flat as an R
-algebra.
Stacks Tag 00HB (Part (4))
Equations
Instances For
theorem
RingHom.FaithfullyFlat.flat
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.FaithfullyFlat)
:
f.Flat
theorem
RingHom.FaithfullyFlat.stableUnderComposition :
StableUnderComposition fun {R S : Type u_3} [CommRing R] [CommRing S] => FaithfullyFlat
theorem
RingHom.FaithfullyFlat.of_bijective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : Function.Bijective ⇑f)
:
theorem
RingHom.FaithfullyFlat.respectsIso :
RespectsIso fun {R S : Type u_3} [CommRing R] [CommRing S] => FaithfullyFlat
theorem
RingHom.FaithfullyFlat.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_3} [CommRing R] [CommRing S] => FaithfullyFlat