Flat ring homomorphisms #
In this file we define flat ring homomorphisms and show their meta properties.
A ring homomorphism f : R →+* S
is flat if S
is flat as an R
module.
Equations
- f.Flat = Module.Flat R S
Instances For
The identity of a ring is flat.
theorem
RingHom.Flat.of_bijective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : Function.Bijective ⇑f)
:
f.Flat
Bijective ring maps are flat.
theorem
RingHom.Flat.containsIdentities :
ContainsIdentities fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.stableUnderComposition :
StableUnderComposition fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.respectsIso :
RespectsIso fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.holdsForLocalizationAway :
HoldsForLocalizationAway fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.ofLocalizationSpanTarget :
OfLocalizationSpanTarget fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.propertyIsLocal :
PropertyIsLocal fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
Flat is a local property of ring homomorphisms.
theorem
RingHom.Flat.ofLocalizationPrime :
OfLocalizationPrime fun {R S : Type u_4} [CommRing R] [CommRing S] => Flat
theorem
RingHom.Flat.localRingHom
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.Flat)
(P : Ideal S)
[P.IsPrime]
(Q : Ideal R)
[Q.IsPrime]
(hQP : Q = Ideal.comap f P)
:
(Localization.localRingHom Q P f hQP).Flat