Smooth algebras over fields #
We show that separably generated extensions of fields are smooth. In particular finitely generated field extensions over perfect fields are smooth.
theorem
Algebra.FormallySmooth.adjoin_of_algebraicIndependent
{K : Type u_1}
{L : Type u_2}
{ι : Type u_3}
[Field L]
[Field K]
[Algebra K L]
{v : ι → L}
(hb : AlgebraicIndependent K v)
:
FormallySmooth K ↥(IntermediateField.adjoin K (Set.range v))
theorem
Algebra.FormallySmooth.of_algebraicIndependent
{K : Type u_1}
{L : Type u_2}
{ι : Type u_3}
[Field L]
[Field K]
[Algebra K L]
{v : ι → L}
(hb : AlgebraicIndependent K v)
(hb' : IntermediateField.adjoin K (Set.range v) = ⊤)
:
FormallySmooth K L
Purely transcendental extensions are formally smooth.
theorem
Algebra.FormallySmooth.of_algebraicIndependent_of_isSeparable
{K : Type u_1}
{L : Type u_2}
{ι : Type u_3}
[Field L]
[Field K]
[Algebra K L]
[EssFiniteType K L]
{v : ι → L}
(hb : AlgebraicIndependent K v)
[Algebra.IsSeparable (↥(IntermediateField.adjoin K (Set.range v))) L]
:
FormallySmooth K L
Separably generated extensions are formally smooth.
@[instance 100]
instance
Algebra.FormallySmooth.of_perfectField
{K : Type u_1}
{L : Type u_2}
[Field L]
[Field K]
[Algebra K L]
[PerfectField K]
[EssFiniteType K L]
:
FormallySmooth K L