Documentation

Mathlib.FieldTheory.SeparablyGenerated

Separably generated extensions #

We aim to formalize the following result:

Let K/k be a finitely generated field extension with characteristic p > 0, then TFAE

  1. K/k is separably generated
  2. If { sᵢ } ⊆ K is an arbitrary k-linearly independent set, { sᵢᵖ } ⊆ K is also k-linearly independent
  3. K ⊗ₖ k^{1/p} is reduced
  4. K is geometrically reduced over k.
  5. k and Kᵖ are linearly disjoint over kᵖ in K.

Main result #

def MvPolynomial.toPolynomialAdjoinImageCompl {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] (F : MvPolynomial ι k) (a : ιK) (i : ι) :

View a multivariate polynomial F(x₁,...,xₙ) as a polynomial in xᵢ with coefficients in F(x₁,...,xᵢ₋₁,xᵢ₊₁,...,xₙ).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] {a : ιK} {F : MvPolynomial ι k} (hFa : (aeval a) F = 0) (i : ι) :
    theorem MvPolynomial.irreducible_toPolynomialAdjoinImageCompl {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] {a : ιK} {F : MvPolynomial ι k} (hF : Irreducible F) (i : ι) (H : AlgebraicIndependent k fun (x : {j : ι | j i}) => a x) :
    theorem MvPolynomial.irreducible_of_forall_totalDegree_le {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] {a : ιK} {F : MvPolynomial ι k} (HF : ∀ (F' : MvPolynomial ι k), F' 0(aeval a) F' = 0F.totalDegree F'.totalDegree) (hF0 : F 0) (hFa : (aeval a) F = 0) :

    If F has minimal total degree among the relations of a, then F is irreducible.

    theorem MvPolynomial.coeff_toPolynomialAdjoinImageCompl_ne_zero {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] {a : ιK} {F : MvPolynomial ι k} (HF : ∀ (F' : MvPolynomial ι k), F' 0(aeval a) F' = 0F.totalDegree F'.totalDegree) (σ : ι →₀ ) ( : σ F.support) (i : ι) (hσi : σ i 0) :
    theorem MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] {a : ιK} {F : MvPolynomial ι k} (HF : ∀ (F' : MvPolynomial ι k), F' 0(aeval a) F' = 0F.totalDegree F'.totalDegree) (hFa : (aeval a) F = 0) (i : ι) (hi : i F.vars) :
    IsAlgebraic (↥(Algebra.adjoin k (a '' {i}))) (a i)
    theorem MvPolynomial.exists_mem_support_not_dvd_of_forall_totalDegree_le {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] (p : ) (hp : Nat.Prime p) (H : ∀ (s : Finset K), LinearIndepOn k id sLinearIndepOn k (fun (x : K) => x ^ p) s) {a : ιK} {F : MvPolynomial ι k} (HF : ∀ (F' : MvPolynomial ι k), F' 0(aeval a) F' = 0F.totalDegree F'.totalDegree) (hF0 : F 0) (hFa : (aeval a) F = 0) :
    ∃ (i : ι), σF.support, ¬p σ i
    theorem exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] (p : ) (hp : Nat.Prime p) (H : ∀ (s : Finset K), LinearIndepOn k id sLinearIndepOn k (fun (x : K) => x ^ p) s) {a : ιK} (n : ι) [ExpChar k p] (ha' : IsTranscendenceBasis k fun (i : { i : ι // i n }) => a i) :
    ∃ (i : ι), (IsTranscendenceBasis k fun (j : { j : ι // j i }) => a j) IsSeparable (↥(IntermediateField.adjoin k (a '' {i}))) (a i)

    Suppose k has chararcteristic p and a₁,...,aₙ is a transcendental basis of K/k. Suppose furthermore that if { sᵢ } ⊆ K is an arbitrary k-linearly independent set, { sᵢᵖ } ⊆ K is also k-linearly independent (which is true when K ⊗ₖ k^{1/p} is reduced).

    Then some subset of a₁,...,aₙ₊₁ forms a transcedental basis that a₁,...,aₙ₊₁ are separable over.

    theorem exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow' {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] (p : ) (hp : Nat.Prime p) (H : ∀ (s : Finset K), LinearIndepOn k id sLinearIndepOn k (fun (x : K) => x ^ p) s) {a : ιK} [ExpChar k p] (s : Set ι) (n : ι) (ha : IsTranscendenceBasis k fun (i : s) => a i) (hn : ns) :
    ∃ (i : ι), (IsTranscendenceBasis k fun (j : ↑(insert n s \ {i})) => a j) IsSeparable (↥(IntermediateField.adjoin k (a '' (insert n s \ {i})))) (a i)
    theorem exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top {k : Type u_1} {K : Type u_2} {ι : Type u_3} [Field k] [Field K] [Algebra k K] (p : ) (hp : Nat.Prime p) (H : ∀ (s : Finset K), LinearIndepOn k id sLinearIndepOn k (fun (x : K) => x ^ p) s) {a : ιK} (n : ι) [ExpChar k p] (ha : IntermediateField.adjoin k (Set.range a) = ) (ha' : IsTranscendenceBasis k fun (i : { i : ι // i n }) => a i) :
    ∃ (i : ι), (IsTranscendenceBasis k fun (j : { j : ι // j i }) => a j) Algebra.IsSeparable (↥(IntermediateField.adjoin k (a '' {i}))) K

    Suppose k has chararcteristic p and K/k is generated by a₁,...,aₙ₊₁, where a₁,...aₙ forms a transcendental basis. Suppose furthermore that if { sᵢ } ⊆ K is an arbitrary k-linearly independent set, { sᵢᵖ } ⊆ K is also k-linearly independent (which is true when K ⊗ₖ k^{1/p} is reduced).

    Then some subset of a₁,...,aₙ₊₁ forms a separable transcedental basis.

    theorem exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_fg {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (p : ) (hp : Nat.Prime p) (H : ∀ (s : Finset K), LinearIndepOn k id sLinearIndepOn k (fun (x : K) => x ^ p) s) [ExpChar k p] (Hfg : .FG) :

    Suppose k has chararcteristic p and K/k is finitely generated. Suppose furthermore that if { sᵢ } ⊆ K is an arbitrary k-linearly independent set, { sᵢᵖ } ⊆ K is also k-linearly independent (which is true when K ⊗ₖ k^{1/p} is reduced).

    Then K/k is finite separably generated.

    TODO: show that this is an if and only if.

    Any finitely generated extension over perfect fields are separably generated.