Multivariate polynomials over integral domains #
This file proves results about multivariate polynomials that hold when the coefficient (semi)ring has no zero divisors.
theorem
MvPolynomial.degreeOf_mul_eq
{R : Type u_1}
{σ : Type u_2}
{n : σ}
[CommSemiring R]
{p q : MvPolynomial σ R}
[NoZeroDivisors R]
(hp : p ≠ 0)
(hq : q ≠ 0)
:
theorem
MvPolynomial.degreeOf_prod_eq
{R : Type u_1}
{σ : Type u_2}
{n : σ}
[CommSemiring R]
[NoZeroDivisors R]
{ι : Type u_3}
(s : Finset ι)
(f : ι → MvPolynomial σ R)
(h : ∀ i ∈ s, f i ≠ 0)
:
theorem
MvPolynomial.degreeOf_pow_eq
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
[NoZeroDivisors R]
(i : σ)
(p : MvPolynomial σ R)
(n : ℕ)
(hp : p ≠ 0)
:
theorem
MvPolynomial.degrees_mul_eq
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
{p q : MvPolynomial σ R}
[NoZeroDivisors R]
(hp : p ≠ 0)
(hq : q ≠ 0)
:
theorem
MvPolynomial.totalDegree_mul_of_isDomain
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
[NoZeroDivisors R]
{f g : MvPolynomial σ R}
(hf : f ≠ 0)
(hg : g ≠ 0)
:
theorem
MvPolynomial.totalDegree_le_of_dvd_of_isDomain
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
[NoZeroDivisors R]
{f g : MvPolynomial σ R}
(h : f ∣ g)
(hg : g ≠ 0)
:
theorem
MvPolynomial.dvd_C_iff_exists
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
[NoZeroDivisors R]
{f : MvPolynomial σ R}
{a : R}
(ha : a ≠ 0)
:
theorem
MvPolynomial.degreeOf_C_mul
{R : Type u_1}
{σ : Type u_2}
[CommSemiring R]
{p : MvPolynomial σ R}
(j : σ)
(c : R)
(hc : c ∈ nonZeroDivisors R)
: