Smooth algebras have Noetherian models #
In this file, we show if S is a smooth R-algebra, there exists a ℤ-subalgebra of finite type
R₀ and a smooth R₀-algebra S₀ such that S ≃ₐ R ⊗[R₀] S₀.
theorem
Algebra.Smooth.exists_subalgebra_finiteType
(R : Type u_1)
[CommRing R]
(A : Type u)
(B : Type u_2)
[CommRing A]
[Algebra R A]
[CommRing B]
[Algebra A B]
[Smooth A B]
:
∃ (A₀ : Subalgebra R A) (B₀ : Type u) (x : CommRing B₀) (x_1 : Algebra (↥A₀) B₀),
FiniteType R ↥A₀ ∧ Smooth (↥A₀) B₀ ∧ Nonempty (B ≃ₐ[A] TensorProduct (↥A₀) A B₀)
Let A be an R-algebra. If B is a smooth A-algebra, there exists an
R-subalgebra of finite type A₀ of A and a smooth A₀-algebra B₀ such that
B ≃ₐ A ⊗[A₀] B₀.
See Algebra.Smooth.exists_finiteType for a version in terms of Function.Injective.
theorem
Algebra.Smooth.exists_finiteType
(R : Type u_1)
[CommRing R]
(A : Type u)
(B : Type u_2)
[CommRing A]
[Algebra R A]
[CommRing B]
[Algebra A B]
[Smooth A B]
:
∃ (A₀ : Type u) (B₀ : Type u) (x : CommRing A₀) (x_1 : CommRing B₀) (x_2 : Algebra R A₀) (x_3 : Algebra A₀ A) (x_4 :
Algebra A₀ B₀),
Function.Injective ⇑(algebraMap A₀ A) ∧ FiniteType R A₀ ∧ Smooth A₀ B₀ ∧ Nonempty (B ≃ₐ[A] TensorProduct A₀ A B₀)
Let A be an R-algebra. If B is a smooth A-algebra, there exists an
R-algebra of finite type A₀ and a smooth A₀-algebra B₀ such that B ≃ₐ A ⊗[A₀] B₀
with A₀ → A injective.
See Algebra.Smooth.exists_subalgebra_finiteType for a version in terms of Subalgebra.