Documentation

Mathlib.SetTheory.Ordinal.Topology

Topology of ordinals #

We prove some miscellaneous results involving the order topology of ordinals.

Main results #

theorem Ordinal.nhdsBasis_Ioc {a : Ordinal.{u}} (h : a 0) :
(nhds a).HasBasis (fun (x : Ordinal.{u}) => x < a) fun (x : Ordinal.{u}) => Set.Ioc x a
theorem Ordinal.nhds_eq_pure {a : Ordinal.{u}} :
nhds a = pure a ¬a.IsLimit
theorem Ordinal.isOpen_iff {s : Set Ordinal.{u}} :
IsOpen s os, o.IsLimita < o, Set.Ioo a o s
theorem Ordinal.mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal.{u}) :
[a closure s, a closure (s Set.Iic a), (s Set.Iic a).Nonempty sSup (s Set.Iic a) = a, ts, t.Nonempty BddAbove t sSup t = a, ∃ (o : Ordinal.{u}), o 0 ∃ (f : (x : Ordinal.{u}) → x < oOrdinal.{u}), (∀ (x : Ordinal.{u}) (hx : x < o), f x hx s) o.bsup f = a, ∃ (ι : Type u), Nonempty ι ∃ (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a].TFAE
theorem Ordinal.mem_closure_iff_iSup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a
@[deprecated Ordinal.mem_closure_iff_iSup]
theorem Ordinal.mem_closure_iff_sup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) Ordinal.sup f = a
theorem Ordinal.mem_iff_iSup_of_isClosed {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a
@[deprecated Ordinal.mem_iff_iSup_of_isClosed]
theorem Ordinal.mem_closed_iff_sup {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) Ordinal.sup f = a
theorem Ordinal.mem_closure_iff_bsup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (o : Ordinal.{u}) (_ : o 0) (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s) o.bsup f = a
theorem Ordinal.mem_closed_iff_bsup {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (o : Ordinal.{u}) (_ : o 0) (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s) o.bsup f = a
theorem Ordinal.isClosed_iff_iSup {s : Set Ordinal.{u}} :
IsClosed s ∀ {ι : Type u}, Nonempty ι∀ (f : ιOrdinal.{u}), (∀ (i : ι), f i s)⨆ (i : ι), f i s
@[deprecated Ordinal.mem_iff_iSup_of_isClosed]
theorem Ordinal.isClosed_iff_sup {s : Set Ordinal.{u}} :
IsClosed s ∀ {ι : Type u}, Nonempty ι∀ (f : ιOrdinal.{u}), (∀ (i : ι), f i s)⨆ (i : ι), f i s
theorem Ordinal.isClosed_iff_bsup {s : Set Ordinal.{u}} :
IsClosed s ∀ {o : Ordinal.{u}}, o 0∀ (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s)o.bsup f s

An ordinal is an accumulation point of a set of ordinals if it is positive and there are elements in the set arbitrarily close to the ordinal from below.

Equations
Instances For

    A set of ordinals is closed below an ordinal if it contains all of its accumulation points below the ordinal.

    Equations
    Instances For
      theorem Ordinal.isAcc_iff (o : Ordinal.{u_1}) (S : Set Ordinal.{u_1}) :
      o.IsAcc S o 0 p < o, (S Set.Ioo p o).Nonempty
      theorem Ordinal.IsAcc.forall_lt {o : Ordinal.{u_1}} {S : Set Ordinal.{u_1}} (h : o.IsAcc S) (p : Ordinal.{u_1}) :
      p < o(S Set.Ioo p o).Nonempty
      theorem Ordinal.IsAcc.pos {o : Ordinal.{u_1}} {S : Set Ordinal.{u_1}} (h : o.IsAcc S) :
      0 < o
      theorem Ordinal.IsAcc.isLimit {o : Ordinal.{u_1}} {S : Set Ordinal.{u_1}} (h : o.IsAcc S) :
      o.IsLimit
      theorem Ordinal.IsAcc.mono {o : Ordinal.{u_1}} {S T : Set Ordinal.{u_1}} (h : S T) (ho : o.IsAcc S) :
      o.IsAcc T
      theorem Ordinal.IsAcc.inter_Ioo_nonempty {o : Ordinal.{u_1}} {S : Set Ordinal.{u_1}} (hS : o.IsAcc S) {p : Ordinal.{u_1}} (hp : p < o) :
      (S Set.Ioo p o).Nonempty
      theorem Ordinal.accPt_subtype {p o : Ordinal.{u_1}} (S : Set Ordinal.{u_1}) (hpo : p < o) :
      AccPt p (Filter.principal S) AccPt p, hpo (Filter.principal (Subtype.val ⁻¹' S))
      theorem Ordinal.isClosedBelow_iff {S : Set Ordinal.{u_1}} {o : Ordinal.{u_1}} :
      Ordinal.IsClosedBelow S o p < o, p.IsAcc Sp S
      theorem Ordinal.IsClosedBelow.forall_lt {S : Set Ordinal.{u_1}} {o : Ordinal.{u_1}} :
      Ordinal.IsClosedBelow S op < o, p.IsAcc Sp S

      Alias of the forward direction of Ordinal.isClosedBelow_iff.

      theorem Ordinal.IsClosedBelow.iInter {ι : Type u} {f : ιSet Ordinal.{u_1}} {o : Ordinal.{u_1}} (h : ∀ (i : ι), Ordinal.IsClosedBelow (f i) o) :
      Ordinal.IsClosedBelow (⋂ (i : ι), f i) o