Topology of ordinals #
We prove some miscellaneous results involving the order topology of ordinals.
Main results #
Ordinal.isClosed_iff_iSup
/Ordinal.isClosed_iff_bsup
: A set of ordinals is closed iff it's closed under suprema.Ordinal.isNormal_iff_strictMono_and_continuous
: A characterization of normal ordinal functions.Ordinal.enumOrd_isNormal_iff_isClosed
: The function enumerating the ordinals of a set is normal iff the set is closed.
@[deprecated Ordinal.nhdsGT (since := "2024-12-22")]
Alias of Ordinal.nhdsGT
.
@[deprecated Ordinal.nhdsLT_eq_nhdsNE (since := "2024-12-22")]
theorem
Ordinal.nhds_left'_eq_nhds_ne
(a : Ordinal.{u_1})
:
nhdsWithin a (Set.Iio a) = nhdsWithin a {a}ᶜ
Alias of Ordinal.nhdsLT_eq_nhdsNE
.
@[deprecated Ordinal.nhdsLE_eq_nhds (since := "2024-12-22")]
Alias of Ordinal.nhdsLE_eq_nhds
.
theorem
Ordinal.hasBasis_nhds_Ioc
{a : Ordinal.{u}}
(h : a ≠ 0)
:
(nhds a).HasBasis (fun (x : Ordinal.{u}) => x < a) fun (x : Ordinal.{u}) => Set.Ioc x a
@[deprecated Ordinal.hasBasis_nhds_Ioc (since := "2024-12-22")]
theorem
Ordinal.nhdsBasis_Ioc
{a : Ordinal.{u}}
(h : a ≠ 0)
:
(nhds a).HasBasis (fun (x : Ordinal.{u}) => x < a) fun (x : Ordinal.{u}) => Set.Ioc x a
Alias of Ordinal.hasBasis_nhds_Ioc
.
theorem
Ordinal.mem_closure_tfae
(a : Ordinal.{u})
(s : Set Ordinal.{u})
:
[a ∈ closure s, a ∈ closure (s ∩ Set.Iic a), (s ∩ Set.Iic a).Nonempty ∧ sSup (s ∩ Set.Iic a) = a,
∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a,
∃ (o : Ordinal.{u}),
o ≠ 0 ∧ ∃ (f : (x : Ordinal.{u}) → x < o → Ordinal.{u}), (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a,
∃ (ι : Type u), Nonempty ι ∧ ∃ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) ∧ ⨆ (i : ι), f i = a].TFAE
@[deprecated Ordinal.mem_closure_iff_iSup (since := "2024-08-27")]
theorem
Ordinal.mem_iff_iSup_of_isClosed
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(hs : IsClosed s)
:
@[deprecated Ordinal.mem_iff_iSup_of_isClosed (since := "2024-08-27")]
theorem
Ordinal.mem_closure_iff_bsup
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
:
a ∈ closure s ↔ ∃ (o : Ordinal.{u}) (_ : o ≠ 0) (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}),
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ o.bsup f = a
theorem
Ordinal.mem_closed_iff_bsup
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(hs : IsClosed s)
:
a ∈ s ↔ ∃ (o : Ordinal.{u}) (_ : o ≠ 0) (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}),
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ o.bsup f = a
@[deprecated Ordinal.mem_iff_iSup_of_isClosed (since := "2024-08-27")]
theorem
Ordinal.isClosed_iff_bsup
{s : Set Ordinal.{u}}
:
IsClosed s ↔ ∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → o.bsup f ∈ s
theorem
Ordinal.isLimit_of_mem_frontier
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(ha : a ∈ frontier s)
:
a.IsLimit
theorem
Ordinal.isNormal_iff_strictMono_and_continuous
(f : Ordinal.{u} → Ordinal.{u})
:
IsNormal f ↔ StrictMono f ∧ Continuous f
An ordinal is an accumulation point of a set of ordinals if it is positive and there are elements in the set arbitrarily close to the ordinal from below.
Equations
- o.IsAcc S = AccPt o (Filter.principal S)
Instances For
A set of ordinals is closed below an ordinal if it contains all of its accumulation points below the ordinal.
Equations
- Ordinal.IsClosedBelow S o = IsClosed (Subtype.val ⁻¹' S)
Instances For
theorem
Ordinal.IsAcc.forall_lt
{o : Ordinal.{u_1}}
{S : Set Ordinal.{u_1}}
(h : o.IsAcc S)
(p : Ordinal.{u_1})
:
theorem
Ordinal.IsAcc.isLimit
{o : Ordinal.{u_1}}
{S : Set Ordinal.{u_1}}
(h : o.IsAcc S)
:
o.IsLimit
theorem
Ordinal.IsAcc.mono
{o : Ordinal.{u_1}}
{S T : Set Ordinal.{u_1}}
(h : S ⊆ T)
(ho : o.IsAcc S)
:
o.IsAcc T
theorem
Ordinal.IsAcc.inter_Ioo_nonempty
{o : Ordinal.{u_1}}
{S : Set Ordinal.{u_1}}
(hS : o.IsAcc S)
{p : Ordinal.{u_1}}
(hp : p < o)
:
theorem
Ordinal.accPt_subtype
{p o : Ordinal.{u_1}}
(S : Set Ordinal.{u_1})
(hpo : p < o)
:
AccPt p (Filter.principal S) ↔ AccPt ⟨p, hpo⟩ (Filter.principal (Subtype.val ⁻¹' S))
theorem
Ordinal.isClosedBelow_iff
{S : Set Ordinal.{u_1}}
{o : Ordinal.{u_1}}
:
IsClosedBelow S o ↔ ∀ p < o, p.IsAcc S → p ∈ S
theorem
Ordinal.IsClosedBelow.forall_lt
{S : Set Ordinal.{u_1}}
{o : Ordinal.{u_1}}
:
IsClosedBelow S o → ∀ p < o, p.IsAcc S → p ∈ S
Alias of the forward direction of Ordinal.isClosedBelow_iff
.
theorem
Ordinal.IsClosedBelow.sInter
{o : Ordinal.{u_1}}
{S : Set (Set Ordinal.{u_1})}
(h : ∀ C ∈ S, IsClosedBelow C o)
:
IsClosedBelow (⋂₀ S) o
theorem
Ordinal.IsClosedBelow.iInter
{ι : Type u}
{f : ι → Set Ordinal.{u_1}}
{o : Ordinal.{u_1}}
(h : ∀ (i : ι), IsClosedBelow (f i) o)
:
IsClosedBelow (⋂ (i : ι), f i) o