Documentation

Mathlib.SetTheory.Ordinal.Arithmetic

Ordinal arithmetic #

Ordinals have an addition (corresponding to disjoint union) that turns them into an additive monoid, and a multiplication (corresponding to the lexicographic order on the product) that turns them into a monoid. One can also define correspondingly a subtraction, a division, a successor function, a power function and a logarithm function.

We also define limit ordinals and prove the basic induction principle on ordinals separating successor ordinals and limit ordinals, in limitRecOn.

Main definitions and results #

We discuss the properties of casts of natural numbers of and of ω with respect to these operations.

Some properties of the operations are also used to discuss general tools on ordinals:

Various other basic arithmetic results are given in Principal.lean instead.

Further properties of addition on ordinals #

@[deprecated add_left_cancel_iff (since := "2024-12-11")]
theorem Ordinal.add_left_cancel (a : Ordinal.{u_4}) {b c : Ordinal.{u_4}} :
a + b = a + c b = c
theorem Ordinal.add_le_add_iff_right {a b : Ordinal.{u_4}} (n : ) :
a + n b + n a b
theorem Ordinal.add_right_cancel {a b : Ordinal.{u_4}} (n : ) :
a + n = b + n a = b
theorem Ordinal.add_eq_zero_iff {a b : Ordinal.{u_4}} :
a + b = 0 a = 0 b = 0

The predecessor of an ordinal #

The ordinal predecessor of o is o' if o = succ o', and o otherwise.

Equations
Instances For
    @[simp]
    theorem Ordinal.pred_zero :
    pred 0 = 0

    Limit ordinals #

    A limit ordinal is an ordinal which is not zero and not a successor.

    TODO: deprecate this in favor of Order.IsSuccLimit.

    Equations
    Instances For
      theorem Ordinal.IsLimit.succ_lt {o a : Ordinal.{u_4}} (h : o.IsLimit) :
      a < oOrder.succ a < o
      theorem Ordinal.limit_le {o : Ordinal.{u_4}} (h : o.IsLimit) {a : Ordinal.{u_4}} :
      o a x < o, x a
      theorem Ordinal.lt_limit {o : Ordinal.{u_4}} (h : o.IsLimit) {a : Ordinal.{u_4}} :
      a < o x < o, a < x
      theorem Ordinal.IsLimit.nat_lt {o : Ordinal.{u_4}} (h : o.IsLimit) (n : ) :
      n < o
      theorem Ordinal.IsLimit.iSup_Iio {o : Ordinal.{u_4}} (h : o.IsLimit) :
      ⨆ (a : (Set.Iio o)), a = o
      def Ordinal.limitRecOn {C : Ordinal.{u_5}Sort u_4} (o : Ordinal.{u_5}) (H₁ : C 0) (H₂ : (o : Ordinal.{u_5}) → C oC (Order.succ o)) (H₃ : (o : Ordinal.{u_5}) → o.IsLimit((o' : Ordinal.{u_5}) → o' < oC o')C o) :
      C o

      Main induction principle of ordinals: if one can prove a property by induction at successor ordinals and at limit ordinals, then it holds for all ordinals.

      Equations
      Instances For
        @[simp]
        theorem Ordinal.limitRecOn_zero {C : Ordinal.{u_4}Sort u_5} (H₁ : C 0) (H₂ : (o : Ordinal.{u_4}) → C oC (Order.succ o)) (H₃ : (o : Ordinal.{u_4}) → o.IsLimit((o' : Ordinal.{u_4}) → o' < oC o')C o) :
        limitRecOn 0 H₁ H₂ H₃ = H₁
        @[simp]
        theorem Ordinal.limitRecOn_succ {C : Ordinal.{u_4}Sort u_5} (o : Ordinal.{u_4}) (H₁ : C 0) (H₂ : (o : Ordinal.{u_4}) → C oC (Order.succ o)) (H₃ : (o : Ordinal.{u_4}) → o.IsLimit((o' : Ordinal.{u_4}) → o' < oC o')C o) :
        (Order.succ o).limitRecOn H₁ H₂ H₃ = H₂ o (o.limitRecOn H₁ H₂ H₃)
        @[simp]
        theorem Ordinal.limitRecOn_limit {C : Ordinal.{u_4}Sort u_5} (o : Ordinal.{u_4}) (H₁ : C 0) (H₂ : (o : Ordinal.{u_4}) → C oC (Order.succ o)) (H₃ : (o : Ordinal.{u_4}) → o.IsLimit((o' : Ordinal.{u_4}) → o' < oC o')C o) (h : o.IsLimit) :
        o.limitRecOn H₁ H₂ H₃ = H₃ o h fun (x : Ordinal.{u_4}) (_h : x < o) => x.limitRecOn H₁ H₂ H₃
        def Ordinal.boundedLimitRecOn {l : Ordinal.{u_5}} (lLim : l.IsLimit) {C : (Set.Iio l)Sort u_4} (o : (Set.Iio l)) (H₁ : C 0, ) (H₂ : (o : (Set.Iio l)) → C oC Order.succ o, ) (H₃ : (o : (Set.Iio l)) → (↑o).IsLimit((o' : (Set.Iio l)) → o' < oC o')C o) :
        C o

        Bounded recursion on ordinals. Similar to limitRecOn, with the assumption o < l added to all cases. The final term's domain is the ordinals below l.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Ordinal.boundedLimitRec_zero {l : Ordinal.{u_4}} (lLim : l.IsLimit) {C : (Set.Iio l)Sort u_5} (H₁ : C 0, ) (H₂ : (o : (Set.Iio l)) → C oC Order.succ o, ) (H₃ : (o : (Set.Iio l)) → (↑o).IsLimit((o' : (Set.Iio l)) → o' < oC o')C o) :
          boundedLimitRecOn lLim 0, H₁ H₂ H₃ = H₁
          @[simp]
          theorem Ordinal.boundedLimitRec_succ {l : Ordinal.{u_4}} (lLim : l.IsLimit) {C : (Set.Iio l)Sort u_5} (o : (Set.Iio l)) (H₁ : C 0, ) (H₂ : (o : (Set.Iio l)) → C oC Order.succ o, ) (H₃ : (o : (Set.Iio l)) → (↑o).IsLimit((o' : (Set.Iio l)) → o' < oC o')C o) :
          boundedLimitRecOn lLim Order.succ o, H₁ H₂ H₃ = H₂ o (boundedLimitRecOn lLim o H₁ H₂ H₃)
          theorem Ordinal.boundedLimitRec_limit {l : Ordinal.{u_4}} (lLim : l.IsLimit) {C : (Set.Iio l)Sort u_5} (o : (Set.Iio l)) (H₁ : C 0, ) (H₂ : (o : (Set.Iio l)) → C oC Order.succ o, ) (H₃ : (o : (Set.Iio l)) → (↑o).IsLimit((o' : (Set.Iio l)) → o' < oC o')C o) (oLim : (↑o).IsLimit) :
          boundedLimitRecOn lLim o H₁ H₂ H₃ = H₃ o oLim fun (x : (Set.Iio l)) (x_1 : x < o) => boundedLimitRecOn lLim x H₁ H₂ H₃
          theorem Ordinal.enum_succ_eq_top {o : Ordinal.{u_4}} :
          (enum fun (x1 x2 : (Order.succ o).toType) => x1 < x2) o, =
          theorem Ordinal.has_succ_of_type_succ_lt {α : Type u_4} {r : ααProp} [wo : IsWellOrder α r] (h : a < type r, Order.succ a < type r) (x : α) :
          ∃ (y : α), r x y
          theorem Ordinal.bounded_singleton {α : Type u_1} {r : ααProp} [IsWellOrder α r] (hr : (type r).IsLimit) (x : α) :
          @[simp]

          Normal ordinal functions #

          A normal ordinal function is a strictly increasing function which is order-continuous, i.e., the image f o of a limit ordinal o is the sup of f a for a < o.

          Equations
          Instances For
            theorem Ordinal.IsNormal.limit_le {f : Ordinal.{u_4}Ordinal.{u_5}} (H : IsNormal f) {o : Ordinal.{u_4}} :
            o.IsLimit∀ {a : Ordinal.{u_5}}, f o a b < o, f b a
            theorem Ordinal.IsNormal.limit_lt {f : Ordinal.{u_4}Ordinal.{u_5}} (H : IsNormal f) {o : Ordinal.{u_4}} (h : o.IsLimit) {a : Ordinal.{u_5}} :
            a < f o b < o, a < f b
            theorem Ordinal.isNormal_iff_strictMono_limit (f : Ordinal.{u_4}Ordinal.{u_5}) :
            IsNormal f StrictMono f ∀ (o : Ordinal.{u_4}), o.IsLimit∀ (a : Ordinal.{u_5}), (∀ b < o, f b a)f o a
            theorem Ordinal.IsNormal.lt_iff {f : Ordinal.{u_4}Ordinal.{u_5}} (H : IsNormal f) {a b : Ordinal.{u_4}} :
            f a < f b a < b
            theorem Ordinal.IsNormal.inj {f : Ordinal.{u_4}Ordinal.{u_5}} (H : IsNormal f) {a b : Ordinal.{u_4}} :
            f a = f b a = b
            theorem Ordinal.IsNormal.le_set {f : Ordinal.{u_4}Ordinal.{u_5}} {o : Ordinal.{u_5}} (H : IsNormal f) (p : Set Ordinal.{u_4}) (p0 : p.Nonempty) (b : Ordinal.{u_4}) (H₂ : ∀ (o : Ordinal.{u_4}), b o ap, a o) :
            f b o ap, f a o
            theorem Ordinal.IsNormal.le_set' {α : Type u_1} {f : Ordinal.{u_4}Ordinal.{u_5}} {o : Ordinal.{u_5}} (H : IsNormal f) (p : Set α) (p0 : p.Nonempty) (g : αOrdinal.{u_4}) (b : Ordinal.{u_4}) (H₂ : ∀ (o : Ordinal.{u_4}), b o ap, g a o) :
            f b o ap, f (g a) o
            theorem Ordinal.add_le_of_limit {a b c : Ordinal.{u_4}} (h : b.IsLimit) :
            a + b c b' < b, a + b' c
            @[deprecated Ordinal.isNormal_add_right (since := "2024-10-11")]

            Alias of Ordinal.isNormal_add_right.

            @[deprecated Ordinal.isLimit_add (since := "2024-10-11")]

            Alias of Ordinal.isLimit_add.

            Subtraction on ordinals #

            a - b is the unique ordinal satisfying b + (a - b) = a when b ≤ a.

            Equations
            theorem Ordinal.le_add_sub (a b : Ordinal.{u_4}) :
            a b + (a - b)
            theorem Ordinal.sub_le {a b c : Ordinal.{u_4}} :
            a - b c a b + c
            theorem Ordinal.lt_sub {a b c : Ordinal.{u_4}} :
            a < b - c c + a < b
            theorem Ordinal.sub_eq_of_add_eq {a b c : Ordinal.{u_4}} (h : a + b = c) :
            c - a = b
            theorem Ordinal.add_sub_cancel_of_le {a b : Ordinal.{u_4}} (h : b a) :
            b + (a - b) = a
            theorem Ordinal.le_sub_of_le {a b c : Ordinal.{u_4}} (h : b a) :
            c a - b b + c a
            theorem Ordinal.sub_lt_of_le {a b c : Ordinal.{u_4}} (h : b a) :
            a - b < c a < b + c
            @[simp]
            theorem Ordinal.sub_zero (a : Ordinal.{u_4}) :
            a - 0 = a
            @[simp]
            theorem Ordinal.zero_sub (a : Ordinal.{u_4}) :
            0 - a = 0
            @[simp]
            theorem Ordinal.sub_self (a : Ordinal.{u_4}) :
            a - a = 0
            theorem Ordinal.sub_sub (a b c : Ordinal.{u_4}) :
            a - b - c = a - (b + c)
            @[simp]
            theorem Ordinal.add_sub_add_cancel (a b c : Ordinal.{u_4}) :
            a + b - (a + c) = b - c
            theorem Ordinal.le_sub_of_add_le {a b c : Ordinal.{u_4}} (h : b + c a) :
            c a - b
            theorem Ordinal.sub_lt_of_lt_add {a b c : Ordinal.{u_4}} (h : a < b + c) (hc : 0 < c) :
            a - b < c
            theorem Ordinal.lt_add_iff {a b c : Ordinal.{u_4}} (hc : c 0) :
            a < b + c d < c, a b + d
            theorem Ordinal.add_le_iff {a b c : Ordinal.{u_4}} (hb : b 0) :
            a + b c d < b, a + d < c
            @[deprecated Ordinal.add_le_iff (since := "2024-12-08")]
            theorem Ordinal.add_le_of_forall_add_lt {a b c : Ordinal.{u_4}} (hb : 0 < b) (h : d < b, a + d < c) :
            a + b c
            theorem Ordinal.isLimit_sub {a b : Ordinal.{u_4}} (ha : a.IsLimit) (h : b < a) :
            (a - b).IsLimit
            @[deprecated Ordinal.isLimit_sub (since := "2024-10-11")]
            theorem Ordinal.sub_isLimit {a b : Ordinal.{u_4}} (ha : a.IsLimit) (h : b < a) :
            (a - b).IsLimit

            Alias of Ordinal.isLimit_sub.

            Multiplication of ordinals #

            The multiplication of ordinals o₁ and o₂ is the (well founded) lexicographic order on o₂ × o₁.

            Equations
            @[simp]
            theorem Ordinal.type_prod_lex {α β : Type u} (r : ααProp) (s : ββProp) [IsWellOrder α r] [IsWellOrder β s] :
            type (Prod.Lex s r) = type r * type s
            @[simp]
            theorem Ordinal.card_mul (a b : Ordinal.{u_4}) :
            (a * b).card = a.card * b.card
            theorem Ordinal.mul_succ (a b : Ordinal.{u_4}) :
            a * Order.succ b = a * b + a
            theorem Ordinal.le_mul_left (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (hb : 0 < b) :
            a a * b
            theorem Ordinal.le_mul_right (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (hb : 0 < b) :
            a b * a
            theorem Ordinal.mul_le_of_limit {a b c : Ordinal.{u_4}} (h : b.IsLimit) :
            a * b c b' < b, a * b' c
            theorem Ordinal.isNormal_mul_right {a : Ordinal.{u_4}} (h : 0 < a) :
            IsNormal fun (x : Ordinal.{u_4}) => a * x
            @[deprecated Ordinal.isNormal_mul_right (since := "2024-10-11")]
            theorem Ordinal.mul_isNormal {a : Ordinal.{u_4}} (h : 0 < a) :
            IsNormal fun (x : Ordinal.{u_4}) => a * x

            Alias of Ordinal.isNormal_mul_right.

            theorem Ordinal.lt_mul_of_limit {a b c : Ordinal.{u_4}} (h : c.IsLimit) :
            a < b * c c' < c, a < b * c'
            theorem Ordinal.mul_lt_mul_iff_left {a b c : Ordinal.{u_4}} (a0 : 0 < a) :
            a * b < a * c b < c
            theorem Ordinal.mul_le_mul_iff_left {a b c : Ordinal.{u_4}} (a0 : 0 < a) :
            a * b a * c b c
            theorem Ordinal.mul_lt_mul_of_pos_left {a b c : Ordinal.{u_4}} (h : a < b) (c0 : 0 < c) :
            c * a < c * b
            theorem Ordinal.mul_pos {a b : Ordinal.{u_4}} (h₁ : 0 < a) (h₂ : 0 < b) :
            0 < a * b
            theorem Ordinal.mul_ne_zero {a b : Ordinal.{u_4}} :
            a 0b 0a * b 0
            theorem Ordinal.le_of_mul_le_mul_left {a b c : Ordinal.{u_4}} (h : c * a c * b) (h0 : 0 < c) :
            a b
            theorem Ordinal.mul_right_inj {a b c : Ordinal.{u_4}} (a0 : 0 < a) :
            a * b = a * c b = c
            theorem Ordinal.isLimit_mul {a b : Ordinal.{u_4}} (a0 : 0 < a) :
            b.IsLimit(a * b).IsLimit
            @[deprecated Ordinal.isLimit_mul (since := "2024-10-11")]
            theorem Ordinal.mul_isLimit {a b : Ordinal.{u_4}} (a0 : 0 < a) :
            b.IsLimit(a * b).IsLimit

            Alias of Ordinal.isLimit_mul.

            theorem Ordinal.isLimit_mul_left {a b : Ordinal.{u_4}} (l : a.IsLimit) (b0 : 0 < b) :
            (a * b).IsLimit
            @[deprecated Ordinal.isLimit_mul_left (since := "2024-10-11")]
            theorem Ordinal.mul_isLimit_left {a b : Ordinal.{u_4}} (l : a.IsLimit) (b0 : 0 < b) :
            (a * b).IsLimit

            Alias of Ordinal.isLimit_mul_left.

            theorem Ordinal.smul_eq_mul (n : ) (a : Ordinal.{u_4}) :
            n a = a * n
            theorem Ordinal.add_mul_succ {a b : Ordinal.{u_4}} (c : Ordinal.{u_4}) (ba : b + a = a) :
            (a + b) * Order.succ c = a * Order.succ c + b
            theorem Ordinal.add_mul_limit {a b c : Ordinal.{u_4}} (ba : b + a = a) (l : c.IsLimit) :
            (a + b) * c = a * c

            Division on ordinals #

            a / b is the unique ordinal o satisfying a = b * o + o' with o' < b.

            Equations
            @[simp]
            theorem Ordinal.div_zero (a : Ordinal.{u_4}) :
            a / 0 = 0
            theorem Ordinal.lt_mul_succ_div (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (h : b 0) :
            a < b * Order.succ (a / b)
            theorem Ordinal.lt_mul_div_add (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (h : b 0) :
            a < b * (a / b) + b
            theorem Ordinal.div_le {a b c : Ordinal.{u_4}} (b0 : b 0) :
            a / b c a < b * Order.succ c
            theorem Ordinal.lt_div {a b c : Ordinal.{u_4}} (h : c 0) :
            a < b / c c * Order.succ a b
            theorem Ordinal.div_pos {b c : Ordinal.{u_4}} (h : c 0) :
            0 < b / c c b
            theorem Ordinal.le_div {a b c : Ordinal.{u_4}} (c0 : c 0) :
            a b / c c * a b
            theorem Ordinal.div_lt {a b c : Ordinal.{u_4}} (b0 : b 0) :
            a / b < c a < b * c
            theorem Ordinal.div_le_of_le_mul {a b c : Ordinal.{u_4}} (h : a b * c) :
            a / b c
            theorem Ordinal.mul_lt_of_lt_div {a b c : Ordinal.{u_4}} :
            a < b / cc * a < b
            @[simp]
            theorem Ordinal.zero_div (a : Ordinal.{u_4}) :
            0 / a = 0
            theorem Ordinal.mul_div_le (a b : Ordinal.{u_4}) :
            b * (a / b) a
            theorem Ordinal.div_le_left {a b : Ordinal.{u_4}} (h : a b) (c : Ordinal.{u_4}) :
            a / c b / c
            theorem Ordinal.mul_add_div (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (b0 : b 0) (c : Ordinal.{u_4}) :
            (b * a + c) / b = a + c / b
            theorem Ordinal.div_eq_zero_of_lt {a b : Ordinal.{u_4}} (h : a < b) :
            a / b = 0
            @[simp]
            theorem Ordinal.mul_div_cancel (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (b0 : b 0) :
            b * a / b = a
            theorem Ordinal.mul_add_div_mul {a c : Ordinal.{u_4}} (hc : c < a) (b d : Ordinal.{u_4}) :
            (a * b + c) / (a * d) = b / d
            theorem Ordinal.mul_div_mul_cancel {a : Ordinal.{u_4}} (ha : a 0) (b c : Ordinal.{u_4}) :
            a * b / (a * c) = b / c
            @[simp]
            theorem Ordinal.div_one (a : Ordinal.{u_4}) :
            a / 1 = a
            @[simp]
            theorem Ordinal.div_self {a : Ordinal.{u_4}} (h : a 0) :
            a / a = 1
            theorem Ordinal.mul_sub (a b c : Ordinal.{u_4}) :
            a * (b - c) = a * b - a * c
            theorem Ordinal.dvd_add_iff {a b c : Ordinal.{u_4}} :
            a b → (a b + c a c)
            theorem Ordinal.div_mul_cancel {a b : Ordinal.{u_4}} :
            a 0a ba * (b / a) = b
            theorem Ordinal.le_of_dvd {a b : Ordinal.{u_4}} :
            b 0a ba b
            theorem Ordinal.dvd_antisymm {a b : Ordinal.{u_4}} (h₁ : a b) (h₂ : b a) :
            a = b

            a % b is the unique ordinal o' satisfying a = b * o + o' with o' < b.

            Equations
            theorem Ordinal.mod_def (a b : Ordinal.{u_4}) :
            a % b = a - b * (a / b)
            theorem Ordinal.mod_le (a b : Ordinal.{u_4}) :
            a % b a
            @[simp]
            theorem Ordinal.mod_zero (a : Ordinal.{u_4}) :
            a % 0 = a
            theorem Ordinal.mod_eq_of_lt {a b : Ordinal.{u_4}} (h : a < b) :
            a % b = a
            @[simp]
            theorem Ordinal.zero_mod (b : Ordinal.{u_4}) :
            0 % b = 0
            theorem Ordinal.div_add_mod (a b : Ordinal.{u_4}) :
            b * (a / b) + a % b = a
            theorem Ordinal.mod_lt (a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (h : b 0) :
            a % b < b
            @[simp]
            theorem Ordinal.mod_self (a : Ordinal.{u_4}) :
            a % a = 0
            @[simp]
            theorem Ordinal.mod_one (a : Ordinal.{u_4}) :
            a % 1 = 0
            theorem Ordinal.dvd_of_mod_eq_zero {a b : Ordinal.{u_4}} (H : a % b = 0) :
            b a
            theorem Ordinal.mod_eq_zero_of_dvd {a b : Ordinal.{u_4}} (H : b a) :
            a % b = 0
            @[simp]
            theorem Ordinal.mul_add_mod_self (x y z : Ordinal.{u_4}) :
            (x * y + z) % x = z % x
            @[simp]
            theorem Ordinal.mul_mod (x y : Ordinal.{u_4}) :
            x * y % x = 0
            theorem Ordinal.mul_add_mod_mul {w x : Ordinal.{u_4}} (hw : w < x) (y z : Ordinal.{u_4}) :
            (x * y + w) % (x * z) = x * (y % z) + w
            theorem Ordinal.mul_mod_mul (x y z : Ordinal.{u_4}) :
            x * y % (x * z) = x * (y % z)
            theorem Ordinal.mod_mod_of_dvd (a : Ordinal.{u_4}) {b c : Ordinal.{u_4}} (h : c b) :
            a % b % c = a % c
            @[simp]
            theorem Ordinal.mod_mod (a b : Ordinal.{u_4}) :
            a % b % b = a % b

            Casting naturals into ordinals, compatibility with operations #

            @[simp]
            theorem Ordinal.one_add_natCast (m : ) :
            1 + m = (Order.succ m)
            @[simp]
            theorem Ordinal.natCast_mul (m n : ) :
            ↑(m * n) = m * n
            @[deprecated Nat.cast_le (since := "2024-10-17")]
            theorem Ordinal.natCast_le {m n : } :
            m n m n
            @[deprecated Nat.cast_inj (since := "2024-10-17")]
            theorem Ordinal.natCast_inj {m n : } :
            m = n m = n
            @[deprecated Nat.cast_lt (since := "2024-10-17")]
            theorem Ordinal.natCast_lt {m n : } :
            m < n m < n
            @[deprecated Nat.cast_eq_zero (since := "2024-10-17")]
            theorem Ordinal.natCast_eq_zero {n : } :
            n = 0 n = 0
            @[deprecated Nat.cast_ne_zero (since := "2024-10-17")]
            theorem Ordinal.natCast_ne_zero {n : } :
            n 0 n 0
            @[deprecated Nat.cast_pos' (since := "2024-10-17")]
            theorem Ordinal.natCast_pos {n : } :
            0 < n 0 < n
            @[simp]
            theorem Ordinal.natCast_sub (m n : ) :
            ↑(m - n) = m - n
            @[simp]
            theorem Ordinal.natCast_div (m n : ) :
            ↑(m / n) = m / n
            @[simp]
            theorem Ordinal.natCast_mod (m n : ) :
            ↑(m % n) = m % n
            @[simp]
            theorem Ordinal.lift_natCast (n : ) :
            lift.{u, v} n = n
            theorem Ordinal.lt_omega0 {o : Ordinal.{u_4}} :
            o < omega0 ∃ (n : ), o = n
            @[deprecated Ordinal.lt_omega0 "No deprecation message was provided." (since := "2024-09-30")]
            theorem Ordinal.lt_omega {o : Ordinal.{u_4}} :
            o < omega0 ∃ (n : ), o = n

            Alias of Ordinal.lt_omega0.

            @[deprecated Ordinal.nat_lt_omega0 "No deprecation message was provided." (since := "2024-09-30")]
            theorem Ordinal.nat_lt_omega (n : ) :
            n < omega0

            Alias of Ordinal.nat_lt_omega0.

            theorem Ordinal.eq_nat_or_omega0_le (o : Ordinal.{u_4}) :
            (∃ (n : ), o = n) omega0 o
            @[deprecated Ordinal.omega0_ne_zero "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.omega0_ne_zero.

            @[deprecated Ordinal.one_lt_omega0 "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.one_lt_omega0.

            @[deprecated Ordinal.isLimit_omega0 "No deprecation message was provided." (since := "2024-10-14")]

            Alias of Ordinal.isLimit_omega0.

            @[deprecated Ordinal.isLimit_omega0 "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.isLimit_omega0.

            theorem Ordinal.omega0_le {o : Ordinal.{u_4}} :
            omega0 o ∀ (n : ), n o
            @[deprecated Ordinal.omega0_le "No deprecation message was provided." (since := "2024-09-30")]
            theorem Ordinal.omega_le {o : Ordinal.{u_4}} :
            omega0 o ∀ (n : ), n o

            Alias of Ordinal.omega0_le.

            theorem Ordinal.nat_lt_limit {o : Ordinal.{u_4}} (h : o.IsLimit) (n : ) :
            n < o
            @[deprecated Ordinal.omega0_le_of_isLimit "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.omega0_le_of_isLimit.

            @[deprecated Ordinal.one_add_omega0 "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.one_add_omega0.

            @[deprecated Ordinal.add_omega0 (since := "2024-09-30")]

            Alias of Ordinal.add_omega0.

            @[simp]
            theorem Ordinal.natCast_add_of_omega0_le {o : Ordinal.{u_4}} (h : omega0 o) (n : ) :
            n + o = o
            @[simp]
            @[deprecated Ordinal.one_add_of_omega0_le "No deprecation message was provided." (since := "2024-09-30")]
            theorem Ordinal.one_add_of_omega_le {o : Ordinal.{u_4}} (h : omega0 o) :
            1 + o = o

            Alias of Ordinal.one_add_of_omega0_le.

            @[deprecated Ordinal.isLimit_iff_omega0_dvd "No deprecation message was provided." (since := "2024-09-30")]

            Alias of Ordinal.isLimit_iff_omega0_dvd.

            @[simp]
            theorem Ordinal.natCast_mod_omega0 (n : ) :
            n % omega0 = n
            @[simp]
            @[deprecated Cardinal.isLimit_ord "No deprecation message was provided." (since := "2024-10-14")]

            Alias of Cardinal.isLimit_ord.