Documentation

Mathlib.Tactic.ComputeAsymptotics.Lemmas

Conversion lemmas #

The main procedure of the compute_asymptotics tactic is able to compute limits of functions at atTop filter. This file contains lemmas we use to reduce other asymptotic goals to the case Tendsto f atTop l.

Main theorems #

This file contains the following lemmas:

We also use lemmas from other files:

theorem Tactic.ComputeAsymptotics.tendsto_nhdsGT_of_tendsto_atTop {ฮฑ : Type u_1} {๐•œ : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] {l : Filter ฮฑ} (f : ๐•œ โ†’ ฮฑ) (c : ๐•œ) (h : Filter.Tendsto (fun (x : ๐•œ) => f (c + xโปยน)) Filter.atTop l) :
theorem Tactic.ComputeAsymptotics.tendsto_nhdsLT_of_tendsto_atTop {ฮฑ : Type u_1} {๐•œ : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] {l : Filter ฮฑ} (f : ๐•œ โ†’ ฮฑ) (c : ๐•œ) (h : Filter.Tendsto (fun (x : ๐•œ) => f (c - xโปยน)) Filter.atTop l) :
theorem Tactic.ComputeAsymptotics.tendsto_nhdsNE_of_tendsto_atTop {ฮฑ : Type u_1} {๐•œ : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] {l : Filter ฮฑ} (f : ๐•œ โ†’ ฮฑ) (c : ๐•œ) (h_neg : Filter.Tendsto (fun (x : ๐•œ) => f (c - xโปยน)) Filter.atTop l) (h_pos : Filter.Tendsto (fun (x : ๐•œ) => f (c + xโปยน)) Filter.atTop l) :
theorem Tactic.ComputeAsymptotics.tendsto_nhdsNE_of_tendsto_atTop_nhds_of_eq {ฮฑ : Type u_1} {๐•œ : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] (f : ๐•œ โ†’ ฮฑ) (c : ๐•œ) [TopologicalSpace ฮฑ] {a b : ฮฑ} (h_neg : Filter.Tendsto (fun (x : ๐•œ) => f (c - xโปยน)) Filter.atTop (nhds a)) (h_pos : Filter.Tendsto (fun (x : ๐•œ) => f (c + xโปยน)) Filter.atTop (nhds b)) (h_eq : a = b) :