Conversion lemmas #
The main procedure of the compute_asymptotics tactic is able to compute limits of functions at
atTop filter. This file contains lemmas we use to reduce other asymptotic goals to
the case Tendsto f atTop l.
Main theorems #
This file contains the following lemmas:
tendsto_nhdsGT_of_tendsto_atTopforTendsto f (๐[>] c) ltendsto_nhdsLT_of_tendsto_atTopforTendsto f (๐[<] c) ltendsto_nhdsNE_of_tendsto_atTopforTendsto f (๐[โ ] c) lisBigO_of_div_tendsto_atTopandisBigO_of_div_tendsto_atBotforf =O[l] g
We also use lemmas from other files:
tendsto_comp_neg_atTop_iffforTendsto f atBot lIsLittleO.of_tendsto_div_atBotandIsLittleO.of_tendsto_div_atTopforf =o[l] gisEquivalent_of_tendsto_oneforf โผ g
theorem
Tactic.ComputeAsymptotics.tendsto_nhdsGT_of_tendsto_atTop
{ฮฑ : Type u_1}
{๐ : Type u_2}
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[TopologicalSpace ๐]
[OrderTopology ๐]
{l : Filter ฮฑ}
(f : ๐ โ ฮฑ)
(c : ๐)
(h : Filter.Tendsto (fun (x : ๐) => f (c + xโปยน)) Filter.atTop l)
:
Filter.Tendsto f (nhdsWithin c (Set.Ioi c)) l
theorem
Tactic.ComputeAsymptotics.tendsto_nhdsLT_of_tendsto_atTop
{ฮฑ : Type u_1}
{๐ : Type u_2}
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[TopologicalSpace ๐]
[OrderTopology ๐]
{l : Filter ฮฑ}
(f : ๐ โ ฮฑ)
(c : ๐)
(h : Filter.Tendsto (fun (x : ๐) => f (c - xโปยน)) Filter.atTop l)
:
Filter.Tendsto f (nhdsWithin c (Set.Iio c)) l
theorem
Tactic.ComputeAsymptotics.tendsto_nhdsNE_of_tendsto_atTop
{ฮฑ : Type u_1}
{๐ : Type u_2}
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[TopologicalSpace ๐]
[OrderTopology ๐]
{l : Filter ฮฑ}
(f : ๐ โ ฮฑ)
(c : ๐)
(h_neg : Filter.Tendsto (fun (x : ๐) => f (c - xโปยน)) Filter.atTop l)
(h_pos : Filter.Tendsto (fun (x : ๐) => f (c + xโปยน)) Filter.atTop l)
:
Filter.Tendsto f (nhdsWithin c {c}แถ) l
theorem
Tactic.ComputeAsymptotics.tendsto_nhdsNE_of_tendsto_atTop_nhds_of_eq
{ฮฑ : Type u_1}
{๐ : Type u_2}
[Field ๐]
[LinearOrder ๐]
[IsStrictOrderedRing ๐]
[TopologicalSpace ๐]
[OrderTopology ๐]
(f : ๐ โ ฮฑ)
(c : ๐)
[TopologicalSpace ฮฑ]
{a b : ฮฑ}
(h_neg : Filter.Tendsto (fun (x : ๐) => f (c - xโปยน)) Filter.atTop (nhds a))
(h_pos : Filter.Tendsto (fun (x : ๐) => f (c + xโปยน)) Filter.atTop (nhds b))
(h_eq : a = b)
:
Filter.Tendsto f (nhdsWithin c {c}แถ) (nhds a)
theorem
Tactic.ComputeAsymptotics.isBigOWith_of_tendsto_top
{C : โ}
{f g : โ โ โ}
{l : Filter โ}
(h : Filter.Tendsto (fun (x : โ) => g x / f x) l Filter.atTop)
(hC : 0 < C)
:
Asymptotics.IsBigOWith C l f g
theorem
Tactic.ComputeAsymptotics.isBigOWith_of_tendsto_bot
{C : โ}
{f g : โ โ โ}
{l : Filter โ}
(h : Filter.Tendsto (fun (x : โ) => g x / f x) l Filter.atBot)
(hC : 0 < C)
:
Asymptotics.IsBigOWith C l f g
theorem
Tactic.ComputeAsymptotics.isBigO_of_div_tendsto_atTop
{f g : โ โ โ}
{l : Filter โ}
(h : Filter.Tendsto (fun (x : โ) => g x / f x) l Filter.atTop)
:
theorem
Tactic.ComputeAsymptotics.isBigO_of_div_tendsto_atBot
{f g : โ โ โ}
{l : Filter โ}
(h : Filter.Tendsto (fun (x : โ) => g x / f x) l Filter.atBot)
: