Compact Hausdorff Rings #
Main results #
IsArtinianRing.finite_of_compactSpace_of_t2Space
: Compact hausdorff artinian rings are finite (and thus discrete).Ideal.isOpen_of_isMaximal
: Maximal ideals are open in compact hausdorff noetherian rings.IsLocalRing.isOpen_iff_finite_quotient
: An ideal in a compact hausdorff noetherian local ring is open iff it has finite index.IsDedekindDomain.isOpen_iff
: An ideal in a compact hausdorff dedekind domain (that is not a field) is open iff it is non-zero.
Future projects #
Show that compact hausdoff rings are totally disconnected and linearly topologized. See https://ncatlab.org/nlab/show/compact+Hausdorff+rings+are+profinite
@[instance 100]
instance
IsArtinianRing.finite_of_compactSpace_of_t2Space
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsArtinianRing R]
:
Finite R
Compact hausdorff artinian (commutative) rings are finite.
theorem
Ideal.isOpen_of_isMaximal
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsNoetherianRing R]
(I : Ideal R)
[I.IsMaximal]
:
IsOpen ↑I
theorem
Ideal.isOpen_pow_of_isMaximal
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsNoetherianRing R]
(I : Ideal R)
[I.IsMaximal]
(n : ℕ)
:
@[instance 100]
instance
instFiniteQuotientIdealOfIsMaximal
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsNoetherianRing R]
(I : Ideal R)
[I.IsMaximal]
:
theorem
IsLocalRing.isOpen_maximalIdeal_pow
(R : Type u_1)
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsLocalRing R]
[IsNoetherianRing R]
(n : ℕ)
:
IsOpen ↑(maximalIdeal R ^ n)
theorem
IsLocalRing.isOpen_maximalIdeal
(R : Type u_1)
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsLocalRing R]
[IsNoetherianRing R]
:
IsOpen ↑(maximalIdeal R)
instance
IsLocalRing.finite_residueField_of_compactSpace
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsLocalRing R]
[IsNoetherianRing R]
:
Finite (ResidueField R)
theorem
IsLocalRing.isOpen_iff_finite_quotient
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsLocalRing R]
[IsNoetherianRing R]
{I : Ideal R}
:
theorem
IsDedekindDomain.isOpen_of_ne_bot
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsDedekindDomain R]
{I : Ideal R}
(hI : I ≠ ⊥)
:
IsOpen ↑I
theorem
IsDedekindDomain.isOpen_iff
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsDedekindDomain R]
(hR : ¬IsField R)
{I : Ideal R}
:
theorem
IsDiscreteValuationRing.isOpen_iff
{R : Type u_1}
[CommRing R]
[TopologicalSpace R]
[IsTopologicalRing R]
[CompactSpace R]
[T2Space R]
[IsDomain R]
[IsDiscreteValuationRing R]
{I : Ideal R}
: