Intrinsic star operation on continuous linear maps #
This file defines the star operation on continuous linear maps: (star f) x = star (f (star x)).
This corresponds to a map being star-preserving, i.e., a map is self-adjoint iff it
is star-preserving.
This is the continuous version of the intrinsic star on linear maps (see
Mathlib/Algebra/Star/LinearMap.lean).
Implementation notes #
Because there is a global star instance on H →L[𝕜] H (defined as the linear map adjoint on
Hilbert spaces), which is mathematically distinct from this star, we provide
this instance on WithConv (E →L[R] F).
@[instance_reducible]
instance
ContinuousLinearMap.intrinsicStar
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
:
The intrinsic star operation on continuous linear maps defined by
(star f) x = star (f (star x)).
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
ContinuousLinearMap.intrinsicStar_apply
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
(f : WithConv (E →L[R] F))
(x : E)
:
@[simp]
theorem
ContinuousLinearMap.toLinearMap_intrinsicStar
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
(f : WithConv (E →L[R] F))
:
theorem
ContinuousLinearMap.IntrinsicStar.isSelfAdjoint_iff_map_star
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
(f : WithConv (E →L[R] F))
:
theorem
ContinuousLinearMap.IntrinsicStar.isSelfAdjoint_toLinearMap_iff
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
(f : WithConv (E →L[R] F))
:
@[instance_reducible]
instance
ContinuousLinearMap.intrinsicInvolutiveStar
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
:
InvolutiveStar (WithConv (E →L[R] F))
The involutive intrinsic star structure on continuous linear maps.
Equations
- ContinuousLinearMap.intrinsicInvolutiveStar = { toStar := ContinuousLinearMap.intrinsicStar, star_involutive := ⋯ }
@[instance_reducible]
instance
ContinuousLinearMap.intrinsicStarAddMonoid
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
[ContinuousAdd F]
:
StarAddMonoid (WithConv (E →L[R] F))
The intrinsic star additive monoid structure on continuous linear maps.
Equations
- ContinuousLinearMap.intrinsicStarAddMonoid = { toInvolutiveStar := ContinuousLinearMap.intrinsicInvolutiveStar, star_add := ⋯ }
theorem
ContinuousLinearMap.intrinsicStar_comp
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
{G : Type u_4}
[AddCommMonoid G]
[Module R G]
[StarAddMonoid G]
[StarModule R G]
[TopologicalSpace G]
[ContinuousStar G]
(f : WithConv (E →L[R] F))
(g : WithConv (G →L[R] E))
:
theorem
ContinuousLinearMap.intrinsicStar_comp'
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
{G : Type u_4}
[AddCommMonoid G]
[Module R G]
[StarAddMonoid G]
[StarModule R G]
[TopologicalSpace G]
[ContinuousStar G]
(f : E →L[R] F)
(g : G →L[R] E)
:
star (WithConv.toConv (f.comp g)) = WithConv.toConv ((star (WithConv.toConv f)).ofConv.comp (star (WithConv.toConv g)).ofConv)
@[simp]
theorem
ContinuousLinearMap.intrinsicStar_id
{R : Type u_1}
{E : Type u_2}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[TopologicalSpace E]
[ContinuousStar E]
:
@[simp]
theorem
ContinuousLinearMap.intrinsicStar_zero
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
:
@[simp]
theorem
ContinuousLinearMap.intrinsicStar_toSpanSingleton
{E : Type u_2}
[AddCommMonoid E]
[StarAddMonoid E]
[TopologicalSpace E]
[ContinuousStar E]
{S : Type u_4}
[Semiring S]
[StarAddMonoid S]
[StarModule S S]
[Module S E]
[StarModule S E]
[TopologicalSpace S]
[ContinuousStar S]
[ContinuousSMul S E]
(a : E)
:
theorem
ContinuousLinearMap.intrinsicStar_smulRight
{E : Type u_2}
{F : Type u_3}
[AddCommMonoid E]
[StarAddMonoid E]
[AddCommMonoid F]
[StarAddMonoid F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
{S : Type u_4}
[Semiring S]
[StarAddMonoid S]
[StarModule S S]
[Module S E]
[StarModule S E]
[TopologicalSpace S]
[ContinuousStar S]
[Module S F]
[StarModule S F]
[ContinuousSMul S F]
(f : WithConv (E →L[S] S))
(x : F)
:
star (WithConv.toConv (f.ofConv.smulRight x)) = WithConv.toConv ((star f).ofConv.smulRight (star x))
instance
ContinuousLinearMap.intrinsicStarModule
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[InvolutiveStar R]
[AddCommMonoid E]
[Module R E]
[StarAddMonoid E]
[StarModule R E]
[AddCommMonoid F]
[Module R F]
[StarAddMonoid F]
[StarModule R F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
[SMulCommClass R R F]
[ContinuousConstSMul R F]
:
StarModule R (WithConv (E →L[R] F))
theorem
ContinuousLinearMap.intrinsicStar_eq_comp
{E : Type u_2}
{F : Type u_3}
[AddCommMonoid E]
[StarAddMonoid E]
[AddCommMonoid F]
[StarAddMonoid F]
[TopologicalSpace E]
[TopologicalSpace F]
[ContinuousStar E]
[ContinuousStar F]
{R : Type u_4}
[CommSemiring R]
[StarRing R]
[Module R E]
[StarModule R E]
[Module R F]
[StarModule R F]
(f : WithConv (E →L[R] F))
: