Documentation

Mathlib.Topology.Covering.Quotient

Covering maps to quotients by free and properly discontinuous group actions #

structure IsAddQuotientCoveringMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_4) [AddGroup G] [AddAction G E] extends Topology.IsQuotientMap f, ContinuousConstVAdd G E :

A function from a topological space E with an action by a discrete group to another topological space X is a quotient covering map if it is a quotient map, the action is continuous and transitive on fibers, and every point of E has a neighborhood whose translates by the group elements are pairwise disjoint.

Instances For
    structure IsQuotientCoveringMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_3) [Group G] [MulAction G E] extends Topology.IsQuotientMap f, ContinuousConstSMul G E :

    A function from a topological space E with an action by a discrete group to another topological space X is a quotient covering map if it is a quotient map, the action is continuous and transitive on fibers, and every point of E has a neighborhood whose translates by the group elements are pairwise disjoint.

    Instances For
      theorem isQuotientCoveringMap_iff {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_3) [Group G] [MulAction G E] :
      IsQuotientCoveringMap f G Topology.IsQuotientMap f ContinuousConstSMul G E (∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) ∀ (e : E), Unhds e, ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg = 1
      theorem isAddQuotientCoveringMap_iff {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_3) [AddGroup G] [AddAction G E] :
      IsAddQuotientCoveringMap f G Topology.IsQuotientMap f ContinuousConstVAdd G E (∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) ∀ (e : E), Unhds e, ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg = 0
      theorem IsQuotientCoveringMap.isCancelSMul {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_3) [Group G] [MulAction G E] (h : IsQuotientCoveringMap f G) :

      The group action on the domain of a quotient covering map is free.

      theorem IsAddQuotientCoveringMap.isCancelVAdd {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (G : Type u_3) [AddGroup G] [AddAction G E] (h : IsAddQuotientCoveringMap f G) :
      theorem IsQuotientCoveringMap.homeomorph_comp {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (h : IsQuotientCoveringMap f G) {Y : Type u_4} [TopologicalSpace Y] (φ : X ≃ₜ Y) :
      theorem IsAddQuotientCoveringMap.homeomorph_comp {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (h : IsAddQuotientCoveringMap f G) {Y : Type u_4} [TopologicalSpace Y] (φ : X ≃ₜ Y) :
      @[simp]
      theorem IsQuotientCoveringMap.homeomorph_comp_iff {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] {Y : Type u_4} [TopologicalSpace Y] (φ : X ≃ₜ Y) :
      @[simp]
      theorem IsAddQuotientCoveringMap.homeomorph_comp_iff {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] {Y : Type u_4} [TopologicalSpace Y] (φ : X ≃ₜ Y) :
      noncomputable def Topology.IsQuotientMap.trivializationOfSMulDisjoint {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg = 1) :

      If a group G acts on a space E and U is an open subset disjoint from all other G-translates of itself, and p is a quotient map by this action, then p admits a Trivialization over the base set p(U).

      Equations
      Instances For
        noncomputable def Topology.IsQuotientMap.trivializationOfVAddDisjoint {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg = 0) :

        If a group G acts on a space E and U is an open subset disjoint from all other G-translates of itself, and p is a quotient map by this action, then p admits a Trivialization over the base set p(U).

        Equations
        Instances For
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfSMulDisjoint_baseSet {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg = 1) :
          (hf.trivializationOfSMulDisjoint hfG U open_U disjoint).baseSet = f '' U
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfVAddDisjoint_target {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg = 0) :
          (hf.trivializationOfVAddDisjoint hfG U open_U disjoint).target = (f '' U) ×ˢ Set.univ
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfSMulDisjoint_source {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg = 1) :
          (hf.trivializationOfSMulDisjoint hfG U open_U disjoint).source = f ⁻¹' (f '' U)
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfSMulDisjoint_target {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg = 1) :
          (hf.trivializationOfSMulDisjoint hfG U open_U disjoint).target = (f '' U) ×ˢ Set.univ
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfVAddDisjoint_source {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg = 0) :
          (hf.trivializationOfVAddDisjoint hfG U open_U disjoint).source = f ⁻¹' (f '' U)
          @[simp]
          theorem Topology.IsQuotientMap.trivializationOfVAddDisjoint_baseSet {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) [TopologicalSpace G] [DiscreteTopology G] (U : Set E) (open_U : IsOpen U) (disjoint : ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg = 0) :
          (hf.trivializationOfVAddDisjoint hfG U open_U disjoint).baseSet = f '' U
          theorem Topology.IsQuotientMap.isCoveringMapOn_of_smul_disjoint {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) (disjoint : ∀ (e : E), Unhds e, ∀ (g : G), ((fun (x : E) => g x) '' U U).Nonemptyg e = e) :
          theorem Topology.IsQuotientMap.isCoveringMapOn_of_vadd_disjoint {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) (disjoint : ∀ (e : E), Unhds e, ∀ (g : G), ((fun (x : E) => g +ᵥ x) '' U U).Nonemptyg +ᵥ e = e) :
          theorem isQuotientCoveringMap_iff_isCoveringMap_and {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] :
          theorem Topology.IsQuotientMap.isCoveringMapOn_of_properlyDiscontinuousSMul {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [Group G] [MulAction G E] (hf : IsQuotientMap f) [ContinuousConstSMul G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ MulAction.orbit G e₂) [ProperlyDiscontinuousSMul G E] [LocallyCompactSpace E] [T2Space E] :
          theorem Topology.IsQuotientMap.isCoveringMapOn_of_properlyDiscontinuousVAdd {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {G : Type u_3} [AddGroup G] [AddAction G E] (hf : IsQuotientMap f) [ContinuousConstVAdd G E] (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁ AddAction.orbit G e₂) [ProperlyDiscontinuousVAdd G E] [LocallyCompactSpace E] [T2Space E] :
          theorem Topology.IsQuotientMap.isQuotientCoveringMap_of_subgroup {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsQuotientMap f) [Group E] [IsTopologicalGroup E] (G : Subgroup E) (hG : IsDiscrete G) (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₂ * e₁⁻¹ G) :
          theorem Topology.IsQuotientMap.isAddQuotientCoveringMap_of_addSubgroup {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsQuotientMap f) [AddGroup E] [IsTopologicalAddGroup E] (G : AddSubgroup E) (hG : IsDiscrete G) (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₂ + -e₁ G) :
          theorem Topology.IsQuotientMap.isQuotientCoveringMap_of_subgroupOp {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsQuotientMap f) [Group E] [IsTopologicalGroup E] (G : Subgroup E) (hG : IsDiscrete G) (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ e₁⁻¹ * e₂ G) :
          theorem Topology.IsQuotientMap.isAddQuotientCoveringMap_of_addSubgroupOp {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsQuotientMap f) [AddGroup E] [IsTopologicalAddGroup E] (G : AddSubgroup E) (hG : IsDiscrete G) (hfG : ∀ {e₁ e₂ : E}, f e₁ = f e₂ -e₁ + e₂ G) :