Documentation

Mathlib.Topology.Homotopy.Path

Homotopy between paths #

In this file, we define a Homotopy between two Paths. In addition, we define a relation Homotopic on Paths, and prove that it is an equivalence relation.

Definitions #

@[inline, reducible]
abbrev Path.Homotopy {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p₀ : Path x₀ x₁) (p₁ : Path x₀ x₁) :

The type of homotopies between two paths.

Equations
Instances For
    theorem Path.Homotopy.coeFn_injective {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} :
    Function.Injective DFunLike.coe
    @[simp]
    theorem Path.Homotopy.source {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (t : unitInterval) :
    F (t, 0) = x₀
    @[simp]
    theorem Path.Homotopy.target {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (t : unitInterval) :
    F (t, 1) = x₁
    def Path.Homotopy.eval {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (t : unitInterval) :
    Path x₀ x₁

    Evaluating a path homotopy at an intermediate point, giving us a Path.

    Equations
    Instances For
      @[simp]
      theorem Path.Homotopy.eval_zero {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) :
      @[simp]
      theorem Path.Homotopy.eval_one {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) :
      @[simp]
      theorem Path.Homotopy.refl_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) (x : unitInterval × unitInterval) :
      (Path.Homotopy.refl p) x = p x.2
      @[simp]
      theorem Path.Homotopy.refl_toFun {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) (x : unitInterval × unitInterval) :
      (Path.Homotopy.refl p) x = p x.2
      def Path.Homotopy.refl {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) :

      Given a path p, we can define a Homotopy p p by F (t, x) = p x.

      Equations
      Instances For
        @[simp]
        theorem Path.Homotopy.symm_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (x : unitInterval × unitInterval) :
        @[simp]
        theorem Path.Homotopy.symm_toFun {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (x : unitInterval × unitInterval) :
        def Path.Homotopy.symm {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) :
        Path.Homotopy p₁ p₀

        Given a Homotopy p₀ p₁, we can define a Homotopy p₁ p₀ by reversing the homotopy.

        Equations
        Instances For
          @[simp]
          theorem Path.Homotopy.symm_symm {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) :
          theorem Path.Homotopy.symm_bijective {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} :
          Function.Bijective Path.Homotopy.symm
          def Path.Homotopy.trans {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {p₂ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (G : Path.Homotopy p₁ p₂) :
          Path.Homotopy p₀ p₂

          Given Homotopy p₀ p₁ and Homotopy p₁ p₂, we can define a Homotopy p₀ p₂ by putting the first homotopy on [0, 1/2] and the second on [1/2, 1].

          Equations
          Instances For
            theorem Path.Homotopy.trans_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {p₂ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (G : Path.Homotopy p₁ p₂) (x : unitInterval × unitInterval) :
            (Path.Homotopy.trans F G) x = if h : x.1 1 / 2 then F ({ val := 2 * x.1, property := }, x.2) else G ({ val := 2 * x.1 - 1, property := }, x.2)
            theorem Path.Homotopy.symm_trans {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {p₂ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (G : Path.Homotopy p₁ p₂) :
            @[simp]
            theorem Path.Homotopy.cast_toFun {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {q₀ : Path x₀ x₁} {q₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (h₀ : p₀ = q₀) (h₁ : p₁ = q₁) (a : unitInterval × unitInterval) :
            (Path.Homotopy.cast F h₀ h₁) a = F a
            @[simp]
            theorem Path.Homotopy.cast_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {q₀ : Path x₀ x₁} {q₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (h₀ : p₀ = q₀) (h₁ : p₁ = q₁) (a : unitInterval × unitInterval) :
            (Path.Homotopy.cast F h₀ h₁) a = F a
            def Path.Homotopy.cast {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {q₀ : Path x₀ x₁} {q₁ : Path x₀ x₁} (F : Path.Homotopy p₀ p₁) (h₀ : p₀ = q₀) (h₁ : p₁ = q₁) :
            Path.Homotopy q₀ q₁

            Casting a Homotopy p₀ p₁ to a Homotopy q₀ q₁ where p₀ = q₀ and p₁ = q₁.

            Equations
            Instances For
              def Path.Homotopy.hcomp {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} {p₀ : Path x₀ x₁} {q₀ : Path x₀ x₁} {p₁ : Path x₁ x₂} {q₁ : Path x₁ x₂} (F : Path.Homotopy p₀ q₀) (G : Path.Homotopy p₁ q₁) :
              Path.Homotopy (Path.trans p₀ p₁) (Path.trans q₀ q₁)

              Suppose p₀ and q₀ are paths from x₀ to x₁, p₁ and q₁ are paths from x₁ to x₂. Furthermore, suppose F : Homotopy p₀ q₀ and G : Homotopy p₁ q₁. Then we can define a homotopy from p₀.trans p₁ to q₀.trans q₁.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem Path.Homotopy.hcomp_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} {p₀ : Path x₀ x₁} {q₀ : Path x₀ x₁} {p₁ : Path x₁ x₂} {q₁ : Path x₁ x₂} (F : Path.Homotopy p₀ q₀) (G : Path.Homotopy p₁ q₁) (x : unitInterval × unitInterval) :
                (Path.Homotopy.hcomp F G) x = if h : x.2 1 / 2 then (Path.Homotopy.eval F x.1) { val := 2 * x.2, property := } else (Path.Homotopy.eval G x.1) { val := 2 * x.2 - 1, property := }
                theorem Path.Homotopy.hcomp_half {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} {p₀ : Path x₀ x₁} {q₀ : Path x₀ x₁} {p₁ : Path x₁ x₂} {q₁ : Path x₁ x₂} (F : Path.Homotopy p₀ q₀) (G : Path.Homotopy p₁ q₁) (t : unitInterval) :
                (Path.Homotopy.hcomp F G) (t, { val := 1 / 2, property := }) = x₁
                def Path.Homotopy.reparam {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) (f : unitIntervalunitInterval) (hf : Continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) :
                Path.Homotopy p (Path.reparam p f hf hf₀ hf₁)

                Suppose p is a path, then we have a homotopy from p to p.reparam f by the convexity of I.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Path.Homotopy.symm₂_apply {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) (x : unitInterval × unitInterval) :
                  @[simp]
                  theorem Path.Homotopy.symm₂_toFun {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) (x : unitInterval × unitInterval) :
                  def Path.Homotopy.symm₂ {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) :

                  Suppose F : Homotopy p q. Then we have a Homotopy p.symm q.symm by reversing the second argument.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem Path.Homotopy.map_apply {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) (f : C(X, Y)) :
                    ∀ (a : unitInterval × unitInterval), (Path.Homotopy.map F f) a = (f F) a
                    @[simp]
                    theorem Path.Homotopy.map_toFun {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) (f : C(X, Y)) :
                    ∀ (a : unitInterval × unitInterval), (Path.Homotopy.map F f) a = (f F) a
                    def Path.Homotopy.map {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (F : Path.Homotopy p q) (f : C(X, Y)) :

                    Given F : Homotopy p q, and f : C(X, Y), we can define a homotopy from p.map f.continuous to q.map f.continuous.

                    Equations
                    • Path.Homotopy.map F f = { toHomotopy := { toContinuousMap := { toFun := f F, continuous_toFun := }, map_zero_left := , map_one_left := }, prop' := }
                    Instances For
                      def Path.Homotopic {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p₀ : Path x₀ x₁) (p₁ : Path x₀ x₁) :

                      Two paths p₀ and p₁ are Path.Homotopic if there exists a Homotopy between them.

                      Equations
                      Instances For
                        theorem Path.Homotopic.refl {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) :
                        theorem Path.Homotopic.symm {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} ⦃p₀ : Path x₀ x₁ ⦃p₁ : Path x₀ x₁ (h : Path.Homotopic p₀ p₁) :
                        Path.Homotopic p₁ p₀
                        theorem Path.Homotopic.trans {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} ⦃p₀ : Path x₀ x₁ ⦃p₁ : Path x₀ x₁ ⦃p₂ : Path x₀ x₁ (h₀ : Path.Homotopic p₀ p₁) (h₁ : Path.Homotopic p₁ p₂) :
                        Path.Homotopic p₀ p₂
                        theorem Path.Homotopic.equivalence {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} :
                        Equivalence Path.Homotopic
                        theorem Path.Homotopic.map {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} {p : Path x₀ x₁} {q : Path x₀ x₁} (h : Path.Homotopic p q) (f : C(X, Y)) :
                        theorem Path.Homotopic.hcomp {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} {p₀ : Path x₀ x₁} {p₁ : Path x₀ x₁} {q₀ : Path x₁ x₂} {q₁ : Path x₁ x₂} (hp : Path.Homotopic p₀ p₁) (hq : Path.Homotopic q₀ q₁) :
                        Path.Homotopic (Path.trans p₀ q₀) (Path.trans p₁ q₁)
                        def Path.Homotopic.setoid {X : Type u} [TopologicalSpace X] (x₀ : X) (x₁ : X) :
                        Setoid (Path x₀ x₁)

                        The setoid on Paths defined by the equivalence relation Path.Homotopic. That is, two paths are equivalent if there is a Homotopy between them.

                        Equations
                        Instances For
                          def Path.Homotopic.Quotient {X : Type u} [TopologicalSpace X] (x₀ : X) (x₁ : X) :

                          The quotient on Path x₀ x₁ by the equivalence relation Path.Homotopic.

                          Equations
                          Instances For
                            def Path.Homotopic.Quotient.comp {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} (P₀ : Path.Homotopic.Quotient x₀ x₁) (P₁ : Path.Homotopic.Quotient x₁ x₂) :

                            The composition of path homotopy classes. This is Path.trans descended to the quotient.

                            Equations
                            Instances For
                              theorem Path.Homotopic.comp_lift {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} (P₀ : Path x₀ x₁) (P₁ : Path x₁ x₂) :
                              Path.trans P₀ P₁ = Path.Homotopic.Quotient.comp P₀ P₁
                              def Path.Homotopic.Quotient.mapFn {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} (P₀ : Path.Homotopic.Quotient x₀ x₁) (f : C(X, Y)) :
                              Path.Homotopic.Quotient (f x₀) (f x₁)

                              The image of a path homotopy class P₀ under a map f. This is Path.map descended to the quotient.

                              Equations
                              Instances For
                                theorem Path.Homotopic.map_lift {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} (P₀ : Path x₀ x₁) (f : C(X, Y)) :
                                Path.map P₀ = Path.Homotopic.Quotient.mapFn P₀ f
                                theorem Path.Homotopic.hpath_hext {X : Type u} [TopologicalSpace X] {x₀ : X} {x₁ : X} {x₂ : X} {x₃ : X} {p₁ : Path x₀ x₁} {p₂ : Path x₂ x₃} (hp : ∀ (t : unitInterval), p₁ t = p₂ t) :
                                HEq p₁ p₂
                                @[simp]
                                theorem Path.toHomotopyConst_apply {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) :
                                ∀ (a : unitInterval × Y), (Path.toHomotopyConst p) a = p a.1
                                def Path.toHomotopyConst {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {x₀ : X} {x₁ : X} (p : Path x₀ x₁) :

                                A path Path x₀ x₁ generates a homotopy between constant functions fun _ ↦ x₀ and fun _ ↦ x₁.

                                Equations
                                Instances For
                                  @[simp]

                                  Two constant continuous maps with nonempty domain are homotopic if and only if their values are joined by a path in the codomain.

                                  def ContinuousMap.Homotopy.evalAt {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {g : C(X, Y)} (H : ContinuousMap.Homotopy f g) (x : X) :
                                  Path (f x) (g x)

                                  Given a homotopy H : f ∼ g, get the path traced by the point x as it moves from f x to g x.

                                  Equations
                                  Instances For