Documentation

Mathlib.Topology.Order.AtTopBotIxx

Filter.atTop and Filter.atBot for intervals in a linear order topology #

Let X be a linear order with order topology. Let a be a point that is either the bottom element of X or is not isolated on the left, see Order.IsSuccPrelimit. Then the Filter.atTop filter on Set.Iio a and 𝓝[<] a are related by the coercion map via pushforward and pullback, see map_coe_Iio_atTop and comap_coe_Iio_nhdsLT.

We prove several versions of this statement for Set.Iio, Set.Ioi, and Set.Ioo, as well as Filter.atTop and Filter.atBot.

The assumption on a is automatically satisfied for densely ordered types, see Order.IsSuccPrelimit.of_dense.

theorem comap_coe_nhdsLT_of_Ioo_subset {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {s : Set X} {b : X} (hsb : s Set.Iio b) (hs : s.Nonemptya < b, Set.Ioo a b s) (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :
theorem comap_coe_nhdsGT_of_Ioo_subset {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {s : Set X} {a : X} (hsa : s Set.Ioi a) (hs : s.Nonemptyb > a, Set.Ioo a b s) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
theorem map_coe_atTop_of_Ioo_subset {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {s : Set X} {b : X} (hsb : s Set.Iio b) (hs : a' < b, a < b, Set.Ioo a b s) (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :
theorem map_coe_atBot_of_Ioo_subset {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {s : Set X} {a : X} (hsa : s Set.Ioi a) (hs : b' > a, b > a, Set.Ioo a b s) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
@[simp]
theorem comap_coe_Ioo_nhdsLT {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] (a b : X) (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :

The atTop filter for an open interval Ioo a b comes from the left-neighbourhoods filter at the right endpoint in the ambient order.

@[simp]
theorem comap_coe_Ioo_nhdsGT {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] (a b : X) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :

The atBot filter for an open interval Ioo a b comes from the right-neighbourhoods filter at the left endpoint in the ambient order.

@[simp]
@[simp]
@[simp]
theorem map_coe_Ioo_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} (h : a < b) (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :
@[simp]
theorem map_coe_Ioo_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} (h : a < b) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
@[simp]
theorem map_coe_Ioi_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] (a : X) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
@[simp]
theorem map_coe_Iio_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] (a : X) (ha : Order.IsSuccPrelimit a := by exact .of_dense _) :
@[simp]
theorem tendsto_comp_coe_Ioo_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} {α : Type u_2} {l : Filter α} {f : Xα} (h : a < b) (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :
Filter.Tendsto (fun (x : (Set.Ioo a b)) => f x) Filter.atTop l Filter.Tendsto f (nhdsWithin b (Set.Iio b)) l
@[simp]
theorem tendsto_comp_coe_Ioo_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} {α : Type u_2} {l : Filter α} {f : Xα} (h : a < b) (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
Filter.Tendsto (fun (x : (Set.Ioo a b)) => f x) Filter.atBot l Filter.Tendsto f (nhdsWithin a (Set.Ioi a)) l
@[simp]
theorem tendsto_comp_coe_Ioi_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a : X} {α : Type u_2} {l : Filter α} {f : Xα} (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
Filter.Tendsto (fun (x : (Set.Ioi a)) => f x) Filter.atBot l Filter.Tendsto f (nhdsWithin a (Set.Ioi a)) l
@[simp]
theorem tendsto_comp_coe_Iio_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a : X} {α : Type u_2} {l : Filter α} {f : Xα} (ha : Order.IsSuccPrelimit a := by exact .of_dense _) :
Filter.Tendsto (fun (x : (Set.Iio a)) => f x) Filter.atTop l Filter.Tendsto f (nhdsWithin a (Set.Iio a)) l
@[simp]
theorem tendsto_Ioo_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} {α : Type u_2} {l : Filter α} {f : α(Set.Ioo a b)} (hb : Order.IsSuccPrelimit b := by exact .of_dense _) :
Filter.Tendsto f l Filter.atTop Filter.Tendsto (fun (x : α) => (f x)) l (nhdsWithin b (Set.Iio b))
@[simp]
theorem tendsto_Ioo_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a b : X} {α : Type u_2} {l : Filter α} {f : α(Set.Ioo a b)} (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
Filter.Tendsto f l Filter.atBot Filter.Tendsto (fun (x : α) => (f x)) l (nhdsWithin a (Set.Ioi a))
@[simp]
theorem tendsto_Ioi_atBot {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a : X} {α : Type u_2} {l : Filter α} {f : α(Set.Ioi a)} (ha : Order.IsPredPrelimit a := by exact .of_dense _) :
Filter.Tendsto f l Filter.atBot Filter.Tendsto (fun (x : α) => (f x)) l (nhdsWithin a (Set.Ioi a))
@[simp]
theorem tendsto_Iio_atTop {X : Type u_1} [LinearOrder X] [TopologicalSpace X] [OrderTopology X] {a : X} {α : Type u_2} {l : Filter α} {f : α(Set.Iio a)} (ha : Order.IsSuccPrelimit a := by exact .of_dense _) :
Filter.Tendsto f l Filter.atTop Filter.Tendsto (fun (x : α) => (f x)) l (nhdsWithin a (Set.Iio a))