Documentation

ConNF.External.Basic

New file #

In this file...

Main declarations #

def ConNF.union [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x y : ConNF.TSet α) :
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem ConNF.mem_union_iff [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x y : ConNF.TSet α) (z : ConNF.TSet β) :
      z ∈[] x ⊔[] y z ∈[] x z ∈[] y
      def ConNF.higherIndex [ConNF.Params] (α : ConNF.Λ) :
      ConNF.Λ
      Equations
      Instances For
        theorem ConNF.lt_higherIndex [ConNF.Params] {α : ConNF.Λ} :
        α < (ConNF.higherIndex α)
        theorem ConNF.tSet_nonempty [ConNF.Params] {α : ConNF.Λ} (h : ∃ (β : ConNF.Λ), β < α) :
        def ConNF.empty [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) :
        Equations
        Instances For
          @[simp]
          theorem ConNF.mem_empty_iff [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x : ConNF.TSet β) :
          def ConNF.univ [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) :
          Equations
          Instances For
            @[simp]
            theorem ConNF.mem_univ_iff [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x : ConNF.TSet β) :
            x ∈[] ConNF.univ
            def ConNF.orderedPairs [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) :

            The set of all ordered pairs.

            Equations
            Instances For
              @[simp]
              theorem ConNF.mem_orderedPairs_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet β) :
              x ∈[] ConNF.orderedPairs ∃ (a : ConNF.TSet δ) (b : ConNF.TSet δ), x = a, b⟩[, ]
              def ConNF.converse [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet α) :
              Equations
              Instances For
                @[simp]
                theorem ConNF.op_mem_converse_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet α) (a b : ConNF.TSet δ) :
                a, b⟩[, ] ∈[] ConNF.converse x b, a⟩[, ] ∈[] x
                def ConNF.cross [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x y : ConNF.TSet γ) :
                Equations
                Instances For
                  @[simp]
                  theorem ConNF.mem_cross_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x y : ConNF.TSet γ) (a : ConNF.TSet β) :
                  a ∈[] ConNF.cross x y ∃ (b : ConNF.TSet δ) (c : ConNF.TSet δ), a = b, c⟩[, ] b ∈[] x c ∈[] y
                  def ConNF.singletonImage [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) (x : ConNF.TSet β) :
                  Equations
                  Instances For
                    @[simp]
                    theorem ConNF.singletonImage_spec [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) (x : ConNF.TSet β) (z w : ConNF.TSet ε) :
                    {z}[], {w}[]⟩[, ] ∈[] ConNF.singletonImage x z, w⟩[, ] ∈[] x
                    theorem ConNF.exists_of_mem_singletonImage [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) {x : ConNF.TSet β} {z w : ConNF.TSet δ} (h : z, w⟩[, ] ∈[] ConNF.singletonImage x) :
                    ∃ (a : ConNF.TSet ε) (b : ConNF.TSet ε), z = {a}[] w = {b}[]
                    def ConNF.ExternalRel [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :
                    Rel (ConNF.TSet δ) (ConNF.TSet δ)

                    Turn a model element encoding a relation into an actual relation.

                    Equations
                    Instances For
                      @[simp]
                      theorem ConNF.externalRel_converse [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :
                      ConNF.ExternalRel (ConNF.converse r) = (ConNF.ExternalRel r).inv
                      def ConNF.codom [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :

                      The codomain of a relation.

                      Equations
                      Instances For
                        @[simp]
                        theorem ConNF.mem_codom_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) (x : ConNF.TSet δ) :
                        x ∈[] ConNF.codom r x (ConNF.ExternalRel r).codom
                        def ConNF.dom [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :

                        The domain of a relation.

                        Equations
                        Instances For
                          @[simp]
                          theorem ConNF.mem_dom_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) (x : ConNF.TSet δ) :
                          x ∈[] ConNF.dom r x (ConNF.ExternalRel r).dom
                          def ConNF.field [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) :

                          The field of a relation.

                          Equations
                          Instances For
                            @[simp]
                            theorem ConNF.mem_field_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (r : ConNF.TSet α) (x : ConNF.TSet δ) :
                            x ∈[] ConNF.field r x (ConNF.ExternalRel r).field
                            def ConNF.subset [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) :
                            Equations
                            Instances For
                              @[simp]
                              theorem ConNF.subset_spec [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) (a b : ConNF.TSet δ) :
                              a, b⟩[, ] ∈[] ConNF.subset a ⊆[ConNF.TSet ε, ] b
                              def ConNF.membership [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) :
                              Equations
                              Instances For
                                @[simp]
                                theorem ConNF.membership_spec [ConNF.Params] {α β γ δ ε : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (hε : ε < δ) (a : ConNF.TSet ε) (b : ConNF.TSet δ) :
                                {a}[], b⟩[, ] ∈[] ConNF.membership a ∈[] b
                                def ConNF.powerset [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x : ConNF.TSet β) :
                                Equations
                                Instances For
                                  @[simp]
                                  theorem ConNF.mem_powerset_iff [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x y : ConNF.TSet β) :
                                  x ∈[] ConNF.powerset y x ⊆[ConNF.TSet γ, ] y
                                  def ConNF.doubleSingleton [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet γ) :

                                  The set ι²''x = {{{a}} | a ∈ x}.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem ConNF.mem_doubleSingleton_iff [ConNF.Params] {α β γ δ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (hδ : δ < γ) (x : ConNF.TSet γ) (y : ConNF.TSet β) :
                                    y ∈[] ConNF.doubleSingleton x ∃ (z : ConNF.TSet δ), z ∈[] x y = {{z}[]}[]
                                    def ConNF.singletonUnion [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x : ConNF.TSet α) :

                                    The union of a set of singletons: ι⁻¹''x = {a | {a} ∈ x}.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem ConNF.mem_singletonUnion_iff [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x : ConNF.TSet α) (y : ConNF.TSet γ) :
                                      y ∈[] ConNF.singletonUnion x {y}[] ∈[] x
                                      def ConNF.sUnion [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x : ConNF.TSet α) :

                                      The union of a set of sets.

                                      singletonUnion dom {⟨{a}, b⟩ | a ∈ b} ∩ (1 × x) =
                                      singletonUnion dom {⟨{a}, b⟩ | a ∈ b ∧ b ∈ x} =
                                      singletonUnion {{a} | a ∈ b ∧ b ∈ x} =
                                      {a | a ∈ b ∧ b ∈ x} =
                                      ⋃ x
                                      
                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem ConNF.mem_sUnion_iff [ConNF.Params] {α β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < β) (x : ConNF.TSet α) (y : ConNF.TSet γ) :
                                        y ∈[] ConNF.sUnion x ∃ (t : ConNF.TSet β), t ∈[] x y ∈[] t
                                        theorem ConNF.exists_smallUnion [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (s : Set (ConNF.TSet α)) (hs : ConNF.Small s) :
                                        ∃ (x : ConNF.TSet α), ∀ (y : ConNF.TSet β), y ∈[] x ts, y ∈[] t
                                        def ConNF.smallUnion [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (s : Set (ConNF.TSet α)) (hs : ConNF.Small s) :

                                        Our model is κ-complete; small unions exist. In particular, the model knows the correct natural numbers.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem ConNF.mem_smallUnion_iff [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (s : Set (ConNF.TSet α)) (hs : ConNF.Small s) (x : ConNF.TSet β) :
                                          x ∈[] ConNF.smallUnion s hs ts, x ∈[] t