Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- ConNF.«term_⊔'_» = Lean.ParserDescr.trailingNode `ConNF.«term_⊔'_» 68 68 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊔' ") (Lean.ParserDescr.cat `term 68))
Instances For
@[simp]
theorem
ConNF.mem_union_iff
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x y : ConNF.TSet ↑α)
(z : ConNF.TSet ↑β)
:
Equations
- ConNF.higherIndex α = ⋯.choose
Instances For
theorem
ConNF.tSet_nonempty
[ConNF.Params]
{α : ConNF.Λ}
(h : ∃ (β : ConNF.Λ), ↑β < ↑α)
:
Nonempty (ConNF.TSet ↑α)
Instances For
@[simp]
theorem
ConNF.mem_empty_iff
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x : ConNF.TSet ↑β)
:
¬x ∈[hβ] ConNF.empty hβ
Equations
- ConNF.univ hβ = (ConNF.empty hβ) ᶜ[hβ]
Instances For
@[simp]
theorem
ConNF.mem_univ_iff
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x : ConNF.TSet ↑β)
:
x ∈[hβ] ConNF.univ hβ
def
ConNF.orderedPairs
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
:
ConNF.TSet ↑α
The set of all ordered pairs.
Equations
- ConNF.orderedPairs hβ hγ hδ = ConNF.vCross hβ hγ hδ (ConNF.univ hδ)
Instances For
@[simp]
theorem
ConNF.mem_orderedPairs_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑β)
:
x ∈[hβ] ConNF.orderedPairs hβ hγ hδ ↔ ∃ (a : ConNF.TSet ↑δ) (b : ConNF.TSet ↑δ), x = ⟨a, b⟩[hγ, hδ]
def
ConNF.converse
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑α)
:
ConNF.TSet ↑α
Equations
- ConNF.converse hβ hγ hδ x = ConNF.converse' hβ hγ hδ x ⊓[hβ] ConNF.orderedPairs hβ hγ hδ
Instances For
@[simp]
theorem
ConNF.op_mem_converse_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑α)
(a b : ConNF.TSet ↑δ)
:
def
ConNF.cross
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x y : ConNF.TSet ↑γ)
:
ConNF.TSet ↑α
Equations
- ConNF.cross hβ hγ hδ x y = ConNF.converse hβ hγ hδ (ConNF.vCross hβ hγ hδ x) ⊓[hβ] ConNF.vCross hβ hγ hδ y
Instances For
@[simp]
theorem
ConNF.mem_cross_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x y : ConNF.TSet ↑γ)
(a : ConNF.TSet ↑β)
:
def
ConNF.singletonImage
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
(x : ConNF.TSet ↑β)
:
ConNF.TSet ↑α
Equations
- ConNF.singletonImage hβ hγ hδ hε x = ConNF.singletonImage' hβ hγ hδ hε x ⊓[hβ] ConNF.cross hβ hγ hδ (ConNF.cardinalOne hδ hε) (ConNF.cardinalOne hδ hε)
Instances For
theorem
ConNF.exists_of_mem_singletonImage
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
{x : ConNF.TSet ↑β}
{z w : ConNF.TSet ↑δ}
(h : ⟨z, w⟩[hγ, hδ] ∈[hβ] ConNF.singletonImage hβ hγ hδ hε x)
:
def
ConNF.ExternalRel
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
Rel (ConNF.TSet ↑δ) (ConNF.TSet ↑δ)
Turn a model element encoding a relation into an actual relation.
Instances For
@[simp]
theorem
ConNF.externalRel_converse
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
ConNF.ExternalRel hβ hγ hδ (ConNF.converse hβ hγ hδ r) = (ConNF.ExternalRel hβ hγ hδ r).inv
def
ConNF.codom
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
ConNF.TSet ↑γ
The codomain of a relation.
Equations
- ConNF.codom hβ hγ hδ r = (ConNF.typeLower ⋯ hβ hγ hδ (ConNF.singletonImage ⋯ hβ hγ hδ r) ᶜ[⋯]) ᶜ[hδ]
Instances For
@[simp]
theorem
ConNF.mem_codom_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
(x : ConNF.TSet ↑δ)
:
x ∈[hδ] ConNF.codom hβ hγ hδ r ↔ x ∈ (ConNF.ExternalRel hβ hγ hδ r).codom
def
ConNF.dom
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
ConNF.TSet ↑γ
The domain of a relation.
Equations
- ConNF.dom hβ hγ hδ r = ConNF.codom hβ hγ hδ (ConNF.converse hβ hγ hδ r)
Instances For
@[simp]
theorem
ConNF.mem_dom_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
(x : ConNF.TSet ↑δ)
:
def
ConNF.field
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
:
ConNF.TSet ↑γ
The field of a relation.
Equations
- ConNF.field hβ hγ hδ r = ConNF.dom hβ hγ hδ r ⊔[hδ] ConNF.codom hβ hγ hδ r
Instances For
@[simp]
theorem
ConNF.mem_field_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(r : ConNF.TSet ↑α)
(x : ConNF.TSet ↑δ)
:
x ∈[hδ] ConNF.field hβ hγ hδ r ↔ x ∈ (ConNF.ExternalRel hβ hγ hδ r).field
def
ConNF.subset
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
:
ConNF.TSet ↑α
Equations
- ConNF.subset hβ hγ hδ hε = ConNF.subset' hβ hγ hδ hε ⊓[hβ] ConNF.orderedPairs hβ hγ hδ
Instances For
@[simp]
theorem
ConNF.subset_spec
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
(a b : ConNF.TSet ↑δ)
:
def
ConNF.membership
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
:
ConNF.TSet ↑α
Equations
- ConNF.membership hβ hγ hδ hε = ConNF.subset hβ hγ hδ hε ⊓[hβ] ConNF.cross hβ hγ hδ (ConNF.cardinalOne hδ hε) (ConNF.univ hδ)
Instances For
@[simp]
theorem
ConNF.membership_spec
[ConNF.Params]
{α β γ δ ε : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(hε : ↑ε < ↑δ)
(a : ConNF.TSet ↑ε)
(b : ConNF.TSet ↑δ)
:
def
ConNF.powerset
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x : ConNF.TSet ↑β)
:
ConNF.TSet ↑α
Equations
- ConNF.powerset hβ hγ x = ConNF.dom ⋯ ⋯ hβ (ConNF.subset ⋯ ⋯ hβ hγ ⊓[⋯] ConNF.vCross ⋯ ⋯ hβ {x}[hβ])
Instances For
@[simp]
theorem
ConNF.mem_powerset_iff
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x y : ConNF.TSet ↑β)
:
x ∈[hβ] ConNF.powerset hβ hγ y ↔ x ⊆[ConNF.TSet ↑γ, hγ] y
def
ConNF.doubleSingleton
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑γ)
:
ConNF.TSet ↑α
The set ι²''x = {{{a}} | a ∈ x}
.
Equations
- ConNF.doubleSingleton hβ hγ hδ x = ConNF.cross hβ hγ hδ x x ⊓[hβ] ConNF.cardinalOne hβ hγ
Instances For
@[simp]
theorem
ConNF.mem_doubleSingleton_iff
[ConNF.Params]
{α β γ δ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(hδ : ↑δ < ↑γ)
(x : ConNF.TSet ↑γ)
(y : ConNF.TSet ↑β)
:
def
ConNF.singletonUnion
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x : ConNF.TSet ↑α)
:
ConNF.TSet ↑β
The union of a set of singletons: ι⁻¹''x = {a | {a} ∈ x}
.
Equations
- ConNF.singletonUnion hβ hγ x = ConNF.typeLower ⋯ ⋯ hβ hγ (ConNF.vCross ⋯ ⋯ hβ x)
Instances For
@[simp]
theorem
ConNF.mem_singletonUnion_iff
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x : ConNF.TSet ↑α)
(y : ConNF.TSet ↑γ)
:
def
ConNF.sUnion
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x : ConNF.TSet ↑α)
:
ConNF.TSet ↑β
The union of a set of sets.
singletonUnion dom {⟨{a}, b⟩ | a ∈ b} ∩ (1 × x) =
singletonUnion dom {⟨{a}, b⟩ | a ∈ b ∧ b ∈ x} =
singletonUnion {{a} | a ∈ b ∧ b ∈ x} =
{a | a ∈ b ∧ b ∈ x} =
⋃ x
Equations
- ConNF.sUnion hβ hγ x = ConNF.singletonUnion hβ hγ (ConNF.dom ⋯ ⋯ hβ (ConNF.membership ⋯ ⋯ hβ hγ ⊓[⋯] ConNF.cross ⋯ ⋯ hβ (ConNF.cardinalOne hβ hγ) x))
Instances For
@[simp]
theorem
ConNF.mem_sUnion_iff
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(x : ConNF.TSet ↑α)
(y : ConNF.TSet ↑γ)
:
y ∈[hγ] ConNF.sUnion hβ hγ x ↔ ∃ (t : ConNF.TSet ↑β), t ∈[hβ] x ∧ y ∈[hγ] t
theorem
ConNF.exists_smallUnion
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(s : Set (ConNF.TSet ↑α))
(hs : ConNF.Small s)
:
∃ (x : ConNF.TSet ↑α), ∀ (y : ConNF.TSet ↑β), y ∈[hβ] x ↔ ∃ t ∈ s, y ∈[hβ] t
def
ConNF.smallUnion
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(s : Set (ConNF.TSet ↑α))
(hs : ConNF.Small s)
:
ConNF.TSet ↑α
Our model is κ
-complete; small unions exist.
In particular, the model knows the correct natural numbers.
Equations
- ConNF.smallUnion hβ s hs = ⋯.choose
Instances For
@[simp]
theorem
ConNF.mem_smallUnion_iff
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(s : Set (ConNF.TSet ↑α))
(hs : ConNF.Small s)
(x : ConNF.TSet ↑β)
: