Documentation

ConNF.Model.TTT

New file #

In this file...

Main declarations #

@[defaultInstance 200]
instance ConNF.instDerivativeAllPerm_1 [ConNF.Params] {β γ : ConNF.TypeIndex} :

A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem ConNF.allPerm_deriv_nil' [ConNF.Params] {β : ConNF.TypeIndex} (ρ : ConNF.AllPerm β) :
ρ ConNF.Path.nil = ρ
@[simp]
theorem ConNF.allPerm_deriv_sderiv' [ConNF.Params] {β γ δ : ConNF.TypeIndex} (ρ : ConNF.AllPerm β) (A : β γ) (h : δ < γ) :
ρ (A h) = ρ A h
@[simp]
theorem ConNF.allPermSderiv_forget' [ConNF.Params] {β γ : ConNF.TypeIndex} (h : γ < β) (ρ : ConNF.AllPerm β) :
(ρ h) = ρ h
@[simp]
theorem ConNF.allPerm_inv_sderiv' [ConNF.Params] {β γ : ConNF.TypeIndex} (h : γ < β) (ρ : ConNF.AllPerm β) :
ρ⁻¹ h = (ρ h)⁻¹
def ConNF.Symmetric [ConNF.Params] {α β : ConNF.Λ} (s : Set (ConNF.TSet β)) (hβ : β < α) :
Equations
Instances For
    def ConNF.newSetEquiv [ConNF.Params] {α : ConNF.Λ} :
    Equations
    Instances For
      @[simp]
      theorem ConNF.newSetEquiv_forget [ConNF.Params] {α : ConNF.Λ} (x : ConNF.TSet α) :
      (ConNF.newSetEquiv x) = x
      def ConNF.allPermEquiv [ConNF.Params] {α : ConNF.Λ} :
      ConNF.NewPerm ConNF.AllPerm α
      Equations
      Instances For
        @[simp]
        theorem ConNF.allPermEquiv_forget [ConNF.Params] {α : ConNF.Λ} (ρ : ConNF.NewPerm) :
        (ConNF.allPermEquiv ρ) = ρ
        theorem ConNF.allPermEquiv_sderiv [ConNF.Params] {α β : ConNF.Λ} (ρ : ConNF.NewPerm) (hβ : β < α) :
        ConNF.allPermEquiv ρ = ρ.sderiv β
        theorem ConNF.TSet.exists_of_symmetric [ConNF.Params] {α β : ConNF.Λ} (s : Set (ConNF.TSet β)) (hβ : β < α) (hs : ConNF.Symmetric s ) :
        ∃ (x : ConNF.TSet α), ∀ (y : ConNF.TSet β), y ∈[] x y s
        theorem ConNF.TSet.exists_support [ConNF.Params] {α : ConNF.Λ} (x : ConNF.TSet α) :
        ∃ (S : ConNF.Support α), ∀ (ρ : ConNF.AllPerm α), ρ S = Sρ x = x
        theorem ConNF.TSet.symmetric [ConNF.Params] {α β : ConNF.Λ} (x : ConNF.TSet α) (hβ : β < α) :
        ConNF.Symmetric {y : ConNF.TSet β | y ∈[] x}
        theorem ConNF.tSet_ext' [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x y : ConNF.TSet α) (h : ∀ (z : ConNF.TSet β), z ∈[] x z ∈[] y) :
        x = y
        @[simp]
        theorem ConNF.TSet.mem_smul_iff' [ConNF.Params] {α β : ConNF.TypeIndex} {x : ConNF.TSet β} {y : ConNF.TSet α} (h : β < α) (ρ : ConNF.AllPerm α) :
        x ∈[h] ρ y ρ⁻¹ h x ∈[h] y
        def ConNF.singleton [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x : ConNF.TSet β) :
        Equations
        Instances For
          @[simp]
          theorem ConNF.typedMem_singleton_iff' [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x y : ConNF.TSet β) :
          y ∈[] ConNF.singleton x y = x
          @[simp]
          theorem ConNF.smul_singleton [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) (x : ConNF.TSet β) (ρ : ConNF.AllPerm α) :
          ρ ConNF.singleton x = ConNF.singleton (ρ x)
          theorem ConNF.singleton_injective [ConNF.Params] {α β : ConNF.Λ} (hβ : β < α) :
          @[simp]
          theorem ConNF.singleton_inj [ConNF.Params] {α β : ConNF.Λ} {hβ : β < α} {x y : ConNF.TSet β} :
          theorem ConNF.sUnion_singleton_symmetric_aux' [ConNF.Params] {α β γ : ConNF.Λ} (hγ : γ < β) (hβ : β < α) (s : Set (ConNF.TSet γ)) (S : ConNF.Support α) (hS : ∀ (ρ : ConNF.AllPerm α), ρ S = Sρ ConNF.singleton '' s = ConNF.singleton '' s) (ρ : ConNF.AllPerm β) :
          ρ S.strong = S.strong ρ s s
          theorem ConNF.sUnion_singleton_symmetric_aux [ConNF.Params] {α β γ : ConNF.Λ} (hγ : γ < β) (hβ : β < α) (s : Set (ConNF.TSet γ)) (S : ConNF.Support α) (hS : ∀ (ρ : ConNF.AllPerm α), ρ S = Sρ ConNF.singleton '' s = ConNF.singleton '' s) (ρ : ConNF.AllPerm β) :
          ρ S.strong = S.strong ρ s = s
          theorem ConNF.sUnion_singleton_symmetric [ConNF.Params] {α β γ : ConNF.Λ} (hγ : γ < β) (hβ : β < α) (s : Set (ConNF.TSet γ)) (hs : ConNF.Symmetric (ConNF.singleton '' s) ) :