@[defaultInstance 200]
instance
ConNF.instDerivativeAllPerm_1
[ConNF.Params]
{β γ : ConNF.TypeIndex}
:
ConNF.Derivative (ConNF.AllPerm β) (ConNF.AllPerm γ) β γ
A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem
ConNF.allPerm_deriv_sderiv'
[ConNF.Params]
{β γ δ : ConNF.TypeIndex}
(ρ : ConNF.AllPerm β)
(A : β ↝ γ)
(h : δ < γ)
:
@[simp]
theorem
ConNF.allPermSderiv_forget'
[ConNF.Params]
{β γ : ConNF.TypeIndex}
(h : γ < β)
(ρ : ConNF.AllPerm β)
:
@[simp]
theorem
ConNF.allPerm_inv_sderiv'
[ConNF.Params]
{β γ : ConNF.TypeIndex}
(h : γ < β)
(ρ : ConNF.AllPerm β)
:
Equations
- ConNF.Symmetric s hβ = ∃ (S : ConNF.Support ↑α), ∀ (ρ : ConNF.AllPerm ↑α), ρᵁ • S = S → ρ ↘ hβ • s = s
Instances For
Equations
- ConNF.newSetEquiv = ConNF.castTSet ⋯ ⋯
Instances For
@[simp]
Equations
- ConNF.allPermEquiv = ConNF.castAllPerm ⋯ ⋯
Instances For
@[simp]
theorem
ConNF.allPermEquiv_sderiv
[ConNF.Params]
{α β : ConNF.Λ}
(ρ : ConNF.NewPerm)
(hβ : ↑β < ↑α)
:
theorem
ConNF.TSet.exists_of_symmetric
[ConNF.Params]
{α β : ConNF.Λ}
(s : Set (ConNF.TSet ↑β))
(hβ : ↑β < ↑α)
(hs : ConNF.Symmetric s hβ)
:
∃ (x : ConNF.TSet ↑α), ∀ (y : ConNF.TSet ↑β), y ∈[hβ] x ↔ y ∈ s
theorem
ConNF.TSet.exists_support
[ConNF.Params]
{α : ConNF.Λ}
(x : ConNF.TSet ↑α)
:
∃ (S : ConNF.Support ↑α), ∀ (ρ : ConNF.AllPerm ↑α), ρᵁ • S = S → ρ • x = x
theorem
ConNF.TSet.symmetric
[ConNF.Params]
{α β : ConNF.Λ}
(x : ConNF.TSet ↑α)
(hβ : ↑β < ↑α)
:
ConNF.Symmetric {y : ConNF.TSet ↑β | y ∈[hβ] x} hβ
theorem
ConNF.tSet_ext'
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x y : ConNF.TSet ↑α)
(h : ∀ (z : ConNF.TSet ↑β), z ∈[hβ] x ↔ z ∈[hβ] y)
:
x = y
@[simp]
theorem
ConNF.TSet.mem_smul_iff'
[ConNF.Params]
{α β : ConNF.TypeIndex}
{x : ConNF.TSet β}
{y : ConNF.TSet α}
(h : β < α)
(ρ : ConNF.AllPerm α)
:
def
ConNF.singleton
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x : ConNF.TSet ↑β)
:
ConNF.TSet ↑α
Equations
- ConNF.singleton hβ x = ConNF.PreCoherentData.singleton hβ x
Instances For
@[simp]
theorem
ConNF.typedMem_singleton_iff'
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x y : ConNF.TSet ↑β)
:
y ∈[hβ] ConNF.singleton hβ x ↔ y = x
@[simp]
theorem
ConNF.smul_singleton
[ConNF.Params]
{α β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x : ConNF.TSet ↑β)
(ρ : ConNF.AllPerm ↑α)
:
ρ • ConNF.singleton hβ x = ConNF.singleton hβ (ρ ↘ hβ • x)
@[simp]
theorem
ConNF.singleton_inj
[ConNF.Params]
{α β : ConNF.Λ}
{hβ : ↑β < ↑α}
{x y : ConNF.TSet ↑β}
:
ConNF.singleton hβ x = ConNF.singleton hβ y ↔ x = y
theorem
ConNF.sUnion_singleton_symmetric_aux
[ConNF.Params]
{α β γ : ConNF.Λ}
(hγ : ↑γ < ↑β)
(hβ : ↑β < ↑α)
(s : Set (ConNF.TSet ↑γ))
(S : ConNF.Support ↑α)
(hS : ∀ (ρ : ConNF.AllPerm ↑α), ρᵁ • S = S → ρ ↘ hβ • ConNF.singleton hγ '' s = ConNF.singleton hγ '' s)
(ρ : ConNF.AllPerm ↑β)
:
theorem
ConNF.sUnion_singleton_symmetric
[ConNF.Params]
{α β γ : ConNF.Λ}
(hγ : ↑γ < ↑β)
(hβ : ↑β < ↑α)
(s : Set (ConNF.TSet ↑γ))
(hs : ConNF.Symmetric (ConNF.singleton hγ '' s) hβ)
:
ConNF.Symmetric s hγ