theorem
ConNF.Support.not_mem_scoderiv_botDeriv
[ConNF.Params]
{β γ : ConNF.Λ}
{hγ : ↑γ < ↑β}
(S : ConNF.Support ↑γ)
(N : ConNF.NearLitter)
:
theorem
ConNF.Support.not_mem_strong_botDeriv
[ConNF.Params]
{β γ : ConNF.Λ}
{hγ : ↑γ < ↑β}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑γ)
(N : ConNF.NearLitter)
:
theorem
ConNF.Support.raise_preStrong'
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ : ConNF.AllPerm ↑β)
(hγ : ↑γ < ↑β)
:
theorem
ConNF.Support.raise_closed'
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ : ConNF.AllPerm ↑β)
(hγ : ↑γ < ↑β)
(hρ : ρᵁ • S ↘ ⋯ = S ↘ ⋯)
:
theorem
ConNF.Support.raise_strong'
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ : ConNF.AllPerm ↑β)
(hγ : ↑γ < ↑β)
(hρ : ρᵁ • S ↘ ⋯ = S ↘ ⋯)
:
theorem
ConNF.Support.convAtoms_injective_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
(A : ↑ConNF.α ↝ ⊥)
:
theorem
ConNF.Support.atomMemRel_le_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
(A : ↑ConNF.α ↝ ⊥)
:
theorem
ConNF.Support.convNearLitters_cases
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
{A : ↑ConNF.α ↝ ⊥}
{N₁ N₂ : ConNF.NearLitter}
:
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₁ N₂ →
N₁ = N₂ ∧ N₁ ∈ (S ⇘. A)ᴺ ∨ ∃ (B : ↑β ↝ ⊥),
A = B ↗ ⋯ ∧ (ρ₁ᵁ B)⁻¹ • N₁ = (ρ₂ᵁ B)⁻¹ • N₂ ∧ (ρ₁ᵁ B)⁻¹ • N₁ ∈ (((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport) ⇘. B)ᴺ
theorem
ConNF.Support.inflexible_of_inflexible_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
{A : ↑ConNF.α ↝ ⊥}
{N₁ N₂ : ConNF.NearLitter}
:
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₁ N₂ →
∀ (P : ConNF.InflexiblePath ↑ConNF.α) (t : ConNF.Tangle P.δ),
A = P.A ↘ ⋯ ↘. → N₁ᴸ = ConNF.fuzz ⋯ t → ∃ (ρ : ConNF.AllPerm P.δ), N₂ᴸ = ConNF.fuzz ⋯ (ρ • t)
theorem
ConNF.Support.atoms_of_inflexible_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
(hS : S.Strong)
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
(A : ↑ConNF.α ↝ ⊥)
(N₁ N₂ : ConNF.NearLitter)
(P : ConNF.InflexiblePath ↑ConNF.α)
(t : ConNF.Tangle P.δ)
(ρ : ConNF.AllPerm P.δ)
:
A = P.A ↘ ⋯ ↘. →
N₁ᴸ = ConNF.fuzz ⋯ t →
N₂ᴸ = ConNF.fuzz ⋯ (ρ • t) →
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₁ N₂ →
∀ (B : P.δ ↝ ⊥),
∀ a ∈ (t.support ⇘. B)ᴬ,
∀ (i : ConNF.κ),
((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) ⇘. (P.A ↘ ⋯ ⇘ B))ᴬ.rel
i a →
((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) ⇘. (P.A ↘ ⋯ ⇘ B))ᴬ.rel
i (ρᵁ B • a)
theorem
ConNF.Support.nearLitters_of_inflexible_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
(hS : S.Strong)
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
(A : ↑ConNF.α ↝ ⊥)
(N₁ N₂ : ConNF.NearLitter)
(P : ConNF.InflexiblePath ↑ConNF.α)
(t : ConNF.Tangle P.δ)
(ρ : ConNF.AllPerm P.δ)
:
A = P.A ↘ ⋯ ↘. →
N₁ᴸ = ConNF.fuzz ⋯ t →
N₂ᴸ = ConNF.fuzz ⋯ (ρ • t) →
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₁ N₂ →
∀ (B : P.δ ↝ ⊥),
∀ N ∈ (t.support ⇘. B)ᴺ,
∀ (i : ConNF.κ),
((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) ⇘. (P.A ↘ ⋯ ⇘ B))ᴺ.rel
i N →
((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) ⇘. (P.A ↘ ⋯ ⇘ B))ᴺ.rel
i (ρᵁ B • N)
theorem
ConNF.Support.litter_eq_of_flexible_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
{S : ConNF.Support ↑ConNF.α}
{T : ConNF.Support ↑γ}
{ρ₁ ρ₂ : ConNF.AllPerm ↑β}
{hγ : ↑γ < ↑β}
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
{A : ↑ConNF.α ↝ ⊥}
{N₁ N₂ N₃ N₄ : ConNF.NearLitter}
:
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₁ N₂ →
ConNF.convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯)
(S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ ⋯ + (T ↗ hγ).strong).interferenceSupport)) ↗ ⋯) A N₃ N₄ →
¬ConNF.Inflexible A N₁ᴸ →
¬ConNF.Inflexible A N₂ᴸ → ¬ConNF.Inflexible A N₃ᴸ → ¬ConNF.Inflexible A N₄ᴸ → N₁ᴸ = N₃ᴸ → N₂ᴸ = N₄ᴸ
theorem
ConNF.Support.sameSpecLe_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ₁ ρ₂ : ConNF.AllPerm ↑β)
(hγ : ↑γ < ↑β)
(hρ₁ : ρ₁ᵁ • S ↘ ⋯ = S ↘ ⋯)
(hρ₂ : ρ₂ᵁ • S ↘ ⋯ = S ↘ ⋯)
:
theorem
ConNF.Support.spec_same_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
{hγ : ↑γ < ↑β}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ : ConNF.AllPerm ↑β)
(hρ : ρᵁ • S ↘ ⋯ = S ↘ ⋯)
:
theorem
ConNF.Support.exists_allowable_of_fixes
[ConNF.Params]
{β γ : ConNF.Λ}
[ConNF.Level]
[ConNF.LtLevel ↑β]
(S : ConNF.Support ↑ConNF.α)
(hS : S.Strong)
(T : ConNF.Support ↑γ)
(ρ : ConNF.AllPerm ↑β)
(hγ : ↑γ < ↑β)
(hρ : ρᵁ • S ↘ ⋯ = S ↘ ⋯)
: