Documentation

ConNF.Model.RaiseStrong

New file #

In this file...

Main declarations #

theorem ConNF.Support.not_mem_scoderiv_botDeriv [ConNF.Params] {β γ : ConNF.Λ} {hγ : γ < β} (S : ConNF.Support γ) (N : ConNF.NearLitter) :
N(S ⇘. (ConNF.Path.nil ↘.))
theorem ConNF.Support.not_mem_strong_botDeriv [ConNF.Params] {β γ : ConNF.Λ} {hγ : γ < β} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support γ) (N : ConNF.NearLitter) :
N((S ).strong ⇘. (ConNF.Path.nil ↘.))
theorem ConNF.Support.raise_preStrong' [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ : ConNF.AllPerm β) (hγ : γ < β) :
(S + (ρ ((T ).strong + (S + (T ).strong).interferenceSupport)) ).PreStrong
theorem ConNF.Support.raise_closed' [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ : ConNF.AllPerm β) (hγ : γ < β) (hρ : ρ S = S ) :
(S + (ρ ((T ).strong + (S + (T ).strong).interferenceSupport)) ).Closed
theorem ConNF.Support.raise_strong' [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ : ConNF.AllPerm β) (hγ : γ < β) (hρ : ρ S = S ) :
(S + (ρ ((T ).strong + (S + (T ).strong).interferenceSupport)) ).Strong
theorem ConNF.Support.convAtoms_injective_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) (A : ConNF.α ) :
(ConNF.convAtoms (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A).Injective
theorem ConNF.Support.atomMemRel_le_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) (A : ConNF.α ) :
ConNF.atomMemRel (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A ConNF.atomMemRel (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A
theorem ConNF.Support.convNearLitters_cases [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} {A : ConNF.α } {N₁ N₂ : ConNF.NearLitter} :
ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₁ N₂N₁ = N₂ N₁ (S ⇘. A) ∃ (B : β ), A = B (ρ₁ B)⁻¹ N₁ = (ρ₂ B)⁻¹ N₂ (ρ₁ B)⁻¹ N₁ (((T ).strong + (S + (T ).strong).interferenceSupport) ⇘. B)
theorem ConNF.Support.inflexible_of_inflexible_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) {A : ConNF.α } {N₁ N₂ : ConNF.NearLitter} :
ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₁ N₂∀ (P : ConNF.InflexiblePath ConNF.α) (t : ConNF.Tangle P), A = P.A ↘.N₁ = ConNF.fuzz t∃ (ρ : ConNF.AllPerm P), N₂ = ConNF.fuzz (ρ t)
theorem ConNF.Support.atoms_of_inflexible_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} (hS : S.Strong) {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) (A : ConNF.α ) (N₁ N₂ : ConNF.NearLitter) (P : ConNF.InflexiblePath ConNF.α) (t : ConNF.Tangle P) (ρ : ConNF.AllPerm P) :
A = P.A ↘.N₁ = ConNF.fuzz tN₂ = ConNF.fuzz (ρ t)ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₁ N₂∀ (B : P ), a(t.support ⇘. B), ∀ (i : ConNF.κ), ((S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) ⇘. (P.A B)).rel i a((S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) ⇘. (P.A B)).rel i (ρ B a)
theorem ConNF.Support.nearLitters_of_inflexible_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} (hS : S.Strong) {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) (A : ConNF.α ) (N₁ N₂ : ConNF.NearLitter) (P : ConNF.InflexiblePath ConNF.α) (t : ConNF.Tangle P) (ρ : ConNF.AllPerm P) :
A = P.A ↘.N₁ = ConNF.fuzz tN₂ = ConNF.fuzz (ρ t)ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₁ N₂∀ (B : P ), N(t.support ⇘. B), ∀ (i : ConNF.κ), ((S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) ⇘. (P.A B)).rel i N((S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) ⇘. (P.A B)).rel i (ρ B N)
theorem ConNF.Support.litter_eq_of_flexible_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] {S : ConNF.Support ConNF.α} {T : ConNF.Support γ} {ρ₁ ρ₂ : ConNF.AllPerm β} {hγ : γ < β} (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) {A : ConNF.α } {N₁ N₂ N₃ N₄ : ConNF.NearLitter} :
ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₁ N₂ConNF.convNearLitters (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) A N₃ N₄¬ConNF.Inflexible A N₁¬ConNF.Inflexible A N₂¬ConNF.Inflexible A N₃¬ConNF.Inflexible A N₄N₁ = N₃N₂ = N₄
theorem ConNF.Support.sameSpecLe_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ₁ ρ₂ : ConNF.AllPerm β) (hγ : γ < β) (hρ₁ : ρ₁ S = S ) (hρ₂ : ρ₂ S = S ) :
ConNF.SameSpecLE (S + (ρ₁ ((T ).strong + (S + (T ).strong).interferenceSupport)) ) (S + (ρ₂ ((T ).strong + (S + (T ).strong).interferenceSupport)) )
theorem ConNF.Support.spec_same_of_fixes [ConNF.Params] {β γ : ConNF.Λ} {hγ : γ < β} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ : ConNF.AllPerm β) (hρ : ρ S = S ) :
(S + ((T ).strong + (S + (T ).strong).interferenceSupport) ).spec = (S + (ρ ((T ).strong + (S + (T ).strong).interferenceSupport)) ).spec
theorem ConNF.Support.exists_allowable_of_fixes [ConNF.Params] {β γ : ConNF.Λ} [ConNF.Level] [ConNF.LtLevel β] (S : ConNF.Support ConNF.α) (hS : S.Strong) (T : ConNF.Support γ) (ρ : ConNF.AllPerm β) (hγ : γ < β) (hρ : ρ S = S ) :
∃ (ρ' : ConNF.AllPerm ConNF.α), ρ' S = S ρ' T = ρ T