theorem
ConNF.InflexiblePath.ext
{inst✝ : ConNF.Params}
{β : ConNF.TypeIndex}
{x y : ConNF.InflexiblePath β}
(γ : x.γ = y.γ)
(δ : x.δ = y.δ)
(ε : x.ε = y.ε)
(A : HEq x.A y.A)
:
x = y
instance
ConNF.instCoderivativeInflexiblePath
[ConNF.Params]
{β β' : ConNF.TypeIndex}
:
ConNF.Coderivative (ConNF.InflexiblePath β) (ConNF.InflexiblePath β') β' β
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
ConNF.InflexiblePath.coderiv_A
[ConNF.Params]
{β β' : ConNF.TypeIndex}
(P : ConNF.InflexiblePath β)
(B : β' ↝ β)
:
theorem
ConNF.instLeLevelSomeΛγ
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.LeLevel β]
(P : ConNF.InflexiblePath β)
:
ConNF.LeLevel ↑P.γ
theorem
ConNF.instLtLevelδOfLeLevel
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.LeLevel β]
(P : ConNF.InflexiblePath β)
:
ConNF.LtLevel P.δ
theorem
ConNF.instLtLevelSomeΛεOfLeLevel
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.LeLevel β]
(P : ConNF.InflexiblePath β)
:
ConNF.LtLevel ↑P.ε
def
ConNF.Inflexible
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
(A : β ↝ ⊥)
(L : ConNF.Litter)
:
Equations
- ConNF.Inflexible A L = ∃ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P.δ), A = P.A ↘ ⋯ ↘. ∧ L = ConNF.fuzz ⋯ t
Instances For
theorem
ConNF.inflexible_iff
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
(A : β ↝ ⊥)
(L : ConNF.Litter)
:
ConNF.Inflexible A L ↔ ∃ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P.δ), A = P.A ↘ ⋯ ↘. ∧ L = ConNF.fuzz ⋯ t
theorem
ConNF.not_inflexible_iff
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
(A : β ↝ ⊥)
(L : ConNF.Litter)
:
¬ConNF.Inflexible A L ↔ ∀ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P.δ), A = P.A ↘ ⋯ ↘. → L ≠ ConNF.fuzz ⋯ t
theorem
ConNF.inflexible_deriv
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{A : β ↝ ⊥}
{L : ConNF.Litter}
(h : ConNF.Inflexible A L)
{β' : ConNF.TypeIndex}
[ConNF.LeLevel β']
(B : β' ↝ β)
:
ConNF.Inflexible (B ⇘ A) L
theorem
ConNF.inflexible_cases
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
(A : β ↝ ⊥)
(L : ConNF.Litter)
:
(∃ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P.δ), A = P.A ↘ ⋯ ↘. ∧ L = ConNF.fuzz ⋯ t) ∨ ¬ConNF.Inflexible A L
theorem
ConNF.inflexiblePath_subsingleton
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{A : β ↝ ⊥}
{L : ConNF.Litter}
{P₁ P₂ : ConNF.InflexiblePath β}
{t₁ : ConNF.Tangle P₁.δ}
{t₂ : ConNF.Tangle P₂.δ}
(hP₁ : A = P₁.A ↘ ⋯ ↘.)
(hP₂ : A = P₂.A ↘ ⋯ ↘.)
(ht₁ : L = ConNF.fuzz ⋯ t₁)
(ht₂ : L = ConNF.fuzz ⋯ t₂)
:
P₁ = P₂
Equations
- ConNF.inflexiblePathEmbedding = { toFun := fun (P : ConNF.InflexiblePath β) => (⟨P.δ, ⋯⟩, ⟨↑P.ε, ⋯⟩, ⟨↑P.γ, P.A⟩), inj' := ⋯ }
Instances For
theorem
ConNF.card_inflexiblePath_lt
[ConNF.Params]
(β : ConNF.TypeIndex)
:
Cardinal.mk (ConNF.InflexiblePath β) < (Cardinal.mk ConNF.μ).ord.cof