Documentation

ConNF.FOA.Inflexible

New file #

In this file...

Main declarations #

structure ConNF.InflexiblePath [ConNF.Params] (β : ConNF.TypeIndex) :
  • γ : ConNF.Λ
  • δ : ConNF.TypeIndex
  • ε : ConNF.Λ
  • hδ : self < self
  • hε : self < self
  • hδε : self self
  • A : β self
Instances For
    theorem ConNF.InflexiblePath.ext {inst✝ : ConNF.Params} {β : ConNF.TypeIndex} {x y : ConNF.InflexiblePath β} (γ : x = y) (δ : x = y) (ε : x = y) (A : HEq x.A y.A) :
    x = y
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem ConNF.InflexiblePath.coderiv_A [ConNF.Params] {β β' : ConNF.TypeIndex} (P : ConNF.InflexiblePath β) (B : β' β) :
    (P B).A = B P.A
    theorem ConNF.instLeLevelSomeΛγ [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.LeLevel β] (P : ConNF.InflexiblePath β) :
    theorem ConNF.instLtLevelδOfLeLevel [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.LeLevel β] (P : ConNF.InflexiblePath β) :
    theorem ConNF.instLtLevelSomeΛεOfLeLevel [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.LeLevel β] (P : ConNF.InflexiblePath β) :
    def ConNF.Inflexible [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] (A : β ) (L : ConNF.Litter) :
    Equations
    Instances For
      theorem ConNF.inflexible_iff [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] (A : β ) (L : ConNF.Litter) :
      ConNF.Inflexible A L ∃ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P), A = P.A ↘. L = ConNF.fuzz t
      theorem ConNF.not_inflexible_iff [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] (A : β ) (L : ConNF.Litter) :
      ¬ConNF.Inflexible A L ∀ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P), A = P.A ↘.L ConNF.fuzz t
      theorem ConNF.inflexible_deriv [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {A : β } {L : ConNF.Litter} (h : ConNF.Inflexible A L) {β' : ConNF.TypeIndex} [ConNF.LeLevel β'] (B : β' β) :
      theorem ConNF.inflexible_cases [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] (A : β ) (L : ConNF.Litter) :
      (∃ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P), A = P.A ↘. L = ConNF.fuzz t) ¬ConNF.Inflexible A L
      theorem ConNF.inflexiblePath_subsingleton [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {A : β } {L : ConNF.Litter} {P₁ P₂ : ConNF.InflexiblePath β} {t₁ : ConNF.Tangle P₁} {t₂ : ConNF.Tangle P₂} (hP₁ : A = P₁.A ↘.) (hP₂ : A = P₂.A ↘.) (ht₁ : L = ConNF.fuzz t₁) (ht₂ : L = ConNF.fuzz t₂) :
      P₁ = P₂
      def ConNF.inflexiblePathEmbedding [ConNF.Params] {β : ConNF.TypeIndex} :
      ConNF.InflexiblePath β (Set.Iic β) × (Set.Iic β) × (γ : ConNF.TypeIndex) × β γ
      Equations
      • ConNF.inflexiblePathEmbedding = { toFun := fun (P : ConNF.InflexiblePath β) => (P, , P, , P, P.A), inj' := }
      Instances For
        theorem ConNF.card_inflexiblePath_lt [ConNF.Params] (β : ConNF.TypeIndex) :