def
ConNF.cardinalNat
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(n : ℕ)
:
ConNF.TSet ↑α
Equations
- ConNF.cardinalNat hβ hγ n = ⋯.choose
Instances For
@[simp]
theorem
ConNF.mem_cardinalNat_iff
[ConNF.Params]
{α β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑β)
(n : ℕ)
(a : ConNF.TSet ↑β)
:
a ∈[hβ] ConNF.cardinalNat hβ hγ n ↔ ∃ (s : Finset (ConNF.TSet ↑γ)), s.card = n ∧ ∀ (b : ConNF.TSet ↑γ), b ∈[hγ] a ↔ b ∈ s