Documentation

ConNF.FOA.BaseAction

Base actions #

In this file, we define base actions.

Main declarations #

Instances For
    theorem ConNF.BaseAction.mem_symmDiff_iff_mem_symmDiff [Params] {ξ : BaseAction} {a₁ a₂ : Atom} {N₁ N₂ N₃ N₄ : NearLitter} :
    ξ.atoms a₁ a₂ξ.nearLitters N₁ N₂ξ.nearLitters N₃ N₄ → (a₁ symmDiff N₁ N₃ a₂ symmDiff N₂ N₄)
    theorem ConNF.BaseAction.ext [Params] {ξ ζ : BaseAction} (atoms : ξ = ζ) (nearLitters : ξ = ζ) :
    ξ = ζ
    theorem ConNF.BaseAction.ext_iff [Params] {ξ ζ : BaseAction} :
    ξ = ζ ξ = ζ ξ = ζ
    theorem ConNF.BaseAction.mem_iff_mem [Params] {ξ : BaseAction} {a₁ a₂ : Atom} {N₁ N₂ : NearLitter} :
    ξ a₁ a₂ξ N₁ N₂ → (a₁ N₁ a₂ N₂)
    theorem ConNF.BaseAction.litter_eq_litter_iff [Params] {ξ : BaseAction} {N₁ N₂ N₃ N₄ : NearLitter} :
    ξ N₁ N₃ξ N₂ N₄ → (N₁ = N₂ N₃ = N₄)
    theorem ConNF.BaseAction.interference_subset_dom [Params] {ξ : BaseAction} {N₁ N₂ : NearLitter} :
    N₁ ξ.domN₂ ξ.dominterference N₁ N₂ ξ.dom
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Instances For
        theorem ConNF.BaseAction.litters_iff [Params] {ξ : BaseAction} (L₁ L₂ : Litter) :
        ξ L₁ L₂ ∃ (N₁ : NearLitter) (N₂ : NearLitter), N₁ = L₁ N₂ = L₂ ξ N₁ N₂
        Equations
        • One or more equations did not get rendered due to their size.
        theorem ConNF.BaseAction.inv_le [Params] {ξ ζ : BaseAction} (h : ξ⁻¹ ζ) :
        ξ ζ⁻¹
        def ConNF.BaseAction.extend [Params] (ξ : BaseAction) (r : Rel Atom Atom) (r_dom_small : Small r.dom) (r_oneOne : r.OneOne) (r_dom_disjoint : Disjoint ξ.dom r.dom) (r_codom_disjoint : Disjoint ξ.codom r.codom) (r_mem_iff_mem : ∀ {a₁ a₂ : Atom} {N₁ N₂ : NearLitter}, r a₁ a₂ξ N₁ N₂ → (a₁ N₁ a₂ N₂)) :

        A definition that can be used to reduce the proof obligations of extending a base action.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem ConNF.BaseAction.le_extend [Params] {ξ : BaseAction} {r : Rel Atom Atom} {r_dom_small : Small r.dom} {r_oneOne : r.OneOne} {r_dom_disjoint : Disjoint ξ.dom r.dom} {r_codom_disjoint : Disjoint ξ.codom r.codom} {r_mem_iff_mem : ∀ {a₁ a₂ : Atom} {N₁ N₂ : NearLitter}, r a₁ a₂ξ N₁ N₂ → (a₁ N₁ a₂ N₂)} :
          ξ ξ.extend r r_dom_small r_oneOne r_dom_disjoint r_codom_disjoint
          Instances For
            theorem ConNF.BaseAction.Nice.mem_litter_dom_iff [Params] {ξ : BaseAction} (h : ξ.Nice) {N : NearLitter} (hN : N ξ.dom) {a : Atom} (ha : aξ.dom) :
            theorem ConNF.BaseAction.Nice.mem_litter_codom_iff [Params] {ξ : BaseAction} (h : ξ.Nice) {N : NearLitter} (hN : N ξ.codom) {a : Atom} (ha : aξ.codom) :

            Extending orbits inside near-litters #

            The set of atoms contained in near-litters but not the corresponding litters.

            Equations
            Instances For
              Instances For
                theorem ConNF.BaseAction.insideCandidate_iff [Params] (ξ : BaseAction) (L : Litter) (a : Atom) :
                ξ.InsideCandidate L a a = L aξ.codom ∀ {N : NearLitter}, N ξ.codomN = La N
                Equations
                Instances For
                  theorem ConNF.BaseAction.insideMap_litter_eq [Params] {ξ : BaseAction} (L : Litter) (x : ξ.inside) :
                  (↑((ξ.insideMap L) x)) = L
                  theorem ConNF.BaseAction.insideMap_not_mem_codom [Params] {ξ : BaseAction} (L : Litter) (x : ξ.inside) :
                  ((ξ.insideMap L) x)ξ.codom
                  theorem ConNF.BaseAction.insideMap_mem_nearLitter [Params] {ξ : BaseAction} (L : Litter) (x : ξ.inside) {N : NearLitter} :
                  N ξ.codomN = L((ξ.insideMap L) x) N
                  Equations
                  Instances For
                    theorem ConNF.BaseAction.insideRel_mem_iff_mem [Params] {ξ : BaseAction} {a₁ a₂ : Atom} {N₁ N₂ : NearLitter} (ha : ξ.insideRel a₁ a₂) (hN : ξ N₁ N₂) :
                    a₁ N₁ a₂ N₂
                    Equations
                    Instances For

                      Extending orbits outside near-litters #

                      Instances For
                        theorem ConNF.BaseAction.sandbox_iff [Params] (ξ : BaseAction) (L : Litter) :
                        ξ.Sandbox L (∀ aξ.codom, a L) ∀ (N : NearLitter) (a : Atom), a = LN ξ.codomaN
                        def ConNF.BaseAction.not_sandbox_eq [Params] (ξ : BaseAction) :
                        {L : Litter | ¬ξ.Sandbox L} = (⋃ aξ.codom, {a}) Nξ.codom, aN, {a}
                        Equations
                        • =
                        Instances For
                          Equations
                          Instances For
                            Equations
                            Instances For
                              Equations
                              Instances For
                                Equations
                                Instances For
                                  theorem ConNF.BaseAction.outsideRel_mem_iff_mem [Params] {ξ : BaseAction} ( : Nξ.dom, N \ N ξ.dom) {a₁ a₂ : Atom} {N₁ N₂ : NearLitter} (ha : ξ.outsideRel a₁ a₂) (hN : ξ N₁ N₂) :
                                  a₁ N₁ a₂ N₂
                                  Equations
                                  Instances For

                                    Nice extensions #