Base actions #
In this file, we define base actions.
Main declarations #
ConNF.BaseAction
: The type of base actions.
- nearLitters : Rel NearLitter NearLitter
- nearLitters_dom_small' : Small self.nearLitters.dom
- mem_iff_mem' {a₁ a₂ : Atom} {N₁ N₂ : NearLitter} : self.atoms a₁ a₂ → self.nearLitters N₁ N₂ → (a₁ ∈ N₁ᴬ ↔ a₂ ∈ N₂ᴬ)
- litter_eq_litter_iff' {N₁ N₂ N₃ N₄ : NearLitter} : self.nearLitters N₁ N₃ → self.nearLitters N₂ N₄ → (N₁ᴸ = N₂ᴸ ↔ N₃ᴸ = N₄ᴸ)
- interference_subset_dom' {N₁ N₂ : NearLitter} : N₁ ∈ self.nearLitters.dom → N₂ ∈ self.nearLitters.dom → interference N₁ N₂ ⊆ self.atoms.dom
- interference_subset_codom' {N₁ N₂ : NearLitter} : N₁ ∈ self.nearLitters.codom → N₂ ∈ self.nearLitters.codom → interference N₁ N₂ ⊆ self.atoms.codom
Instances For
theorem
ConNF.BaseAction.mem_symmDiff_iff_mem_symmDiff
[Params]
{ξ : BaseAction}
{a₁ a₂ : Atom}
{N₁ N₂ N₃ N₄ : NearLitter}
:
Equations
- ConNF.BaseAction.instBaseActionClass = { atoms := ConNF.BaseAction.atoms, atoms_oneOne := ⋯, nearLitters := ConNF.BaseAction.nearLitters, nearLitters_oneOne := ⋯ }
theorem
ConNF.BaseAction.mem_iff_mem
[Params]
{ξ : BaseAction}
{a₁ a₂ : Atom}
{N₁ N₂ : NearLitter}
:
theorem
ConNF.BaseAction.litter_eq_litter_iff
[Params]
{ξ : BaseAction}
{N₁ N₂ N₃ N₄ : NearLitter}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- mk [Params] {ξ : BaseAction} {N₁ N₂ : NearLitter} : ξᴺ N₁ N₂ → ξ.litters N₁ᴸ N₂ᴸ
Instances For
Equations
Equations
- One or more equations did not get rendered due to their size.
def
ConNF.BaseAction.extend
[Params]
(ξ : BaseAction)
(r : Rel Atom Atom)
(r_dom_small : Small r.dom)
(r_oneOne : r.OneOne)
(r_dom_disjoint : Disjoint ξᴬ.dom r.dom)
(r_codom_disjoint : Disjoint ξᴬ.codom r.codom)
(r_mem_iff_mem : ∀ {a₁ a₂ : Atom} {N₁ N₂ : NearLitter}, r a₁ a₂ → ξᴺ N₁ N₂ → (a₁ ∈ N₁ᴬ ↔ a₂ ∈ N₂ᴬ))
:
A definition that can be used to reduce the proof obligations of extending a base action.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ConNF.BaseAction.le_extend
[Params]
{ξ : BaseAction}
{r : Rel Atom Atom}
{r_dom_small : Small r.dom}
{r_oneOne : r.OneOne}
{r_dom_disjoint : Disjoint ξᴬ.dom r.dom}
{r_codom_disjoint : Disjoint ξᴬ.codom r.codom}
{r_mem_iff_mem : ∀ {a₁ a₂ : Atom} {N₁ N₂ : NearLitter}, r a₁ a₂ → ξᴺ N₁ N₂ → (a₁ ∈ N₁ᴬ ↔ a₂ ∈ N₂ᴬ)}
:
Extending orbits inside near-litters #
theorem
ConNF.BaseAction.card_inside_lt_card_insideCandidates
[Params]
(ξ : BaseAction)
(L : Litter)
:
Equations
- ξ.insideMap L = Nonempty.some ⋯
Instances For
theorem
ConNF.BaseAction.insideMap_litter_eq
[Params]
{ξ : BaseAction}
(L : Litter)
(x : ↑ξ.inside)
:
theorem
ConNF.BaseAction.insideMap_not_mem_codom
[Params]
{ξ : BaseAction}
(L : Litter)
(x : ↑ξ.inside)
:
theorem
ConNF.BaseAction.insideMap_mem_nearLitter
[Params]
{ξ : BaseAction}
(L : Litter)
(x : ↑ξ.inside)
{N : NearLitter}
:
theorem
ConNF.BaseAction.insideRel_mem_iff_mem
[Params]
{ξ : BaseAction}
{a₁ a₂ : Atom}
{N₁ N₂ : NearLitter}
(ha : ξ.insideRel a₁ a₂)
(hN : ξᴺ N₁ N₂)
:
Equations
- ξ.insideExtension = ξ.extend ξ.insideRel ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
theorem
ConNF.BaseAction.insideExtension_spec
[Params]
{ξ : BaseAction}
(N : NearLitter)
(hN : N ∈ ξᴺ.dom)
:
Extending orbits outside near-litters #
Instances For
Equations
- ξ.outsideMap = Nonempty.some ⋯
Instances For
theorem
ConNF.BaseAction.outsideMap_litter
[Params]
{ξ : BaseAction}
(x : ↑ξ.outside)
:
ξ.Sandbox (↑(ξ.outsideMap x))ᴸ
Instances For
def
ConNF.BaseAction.outsideExtension
[Params]
(ξ : BaseAction)
(hξ : ∀ N ∈ ξᴺ.dom, Nᴬ \ Nᴸᴬ ⊆ ξᴬ.dom)
:
Equations
- ξ.outsideExtension hξ = ξ.extend ξ.outsideRel ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
Nice extensions #
Equations
Instances For
theorem
ConNF.BaseAction.doubleInsideExtension_dom
[Params]
{ξ : BaseAction}
(N : NearLitter)
(hN : N ∈ ξᴺ.dom)
:
theorem
ConNF.BaseAction.doubleInsideExtension_codom
[Params]
{ξ : BaseAction}
(N : NearLitter)
(hN : N ∈ ξᴺ.codom)
:
theorem
ConNF.BaseAction.niceExtension_aux
[Params]
{ξ : BaseAction}
(N : NearLitter)
(hN : N ∈ ξᴺ.codom)
:
Equations
Instances For
@[simp]
@[simp]