Documentation

ConNF.FOA.BaseAction

Base actions #

In this file, we define base actions.

Main declarations #

Instances For
    theorem ConNF.BaseAction.mem_symmDiff_iff_mem_symmDiff [ConNF.Params] {ξ : ConNF.BaseAction} {a₁ a₂ : ConNF.Atom} {N₁ N₂ N₃ N₄ : ConNF.NearLitter} :
    ξ.atoms a₁ a₂ξ.nearLitters N₁ N₂ξ.nearLitters N₃ N₄(a₁ symmDiff N₁ N₃ a₂ symmDiff N₂ N₄)
    theorem ConNF.BaseAction.ext [ConNF.Params] {ξ ζ : ConNF.BaseAction} (atoms : ξ = ζ) (nearLitters : ξ = ζ) :
    ξ = ζ
    theorem ConNF.BaseAction.mem_iff_mem [ConNF.Params] {ξ : ConNF.BaseAction} {a₁ a₂ : ConNF.Atom} {N₁ N₂ : ConNF.NearLitter} :
    ξ a₁ a₂ξ N₁ N₂(a₁ N₁ a₂ N₂)
    theorem ConNF.BaseAction.litter_eq_litter_iff [ConNF.Params] {ξ : ConNF.BaseAction} {N₁ N₂ N₃ N₄ : ConNF.NearLitter} :
    ξ N₁ N₃ξ N₂ N₄(N₁ = N₂ N₃ = N₄)
    theorem ConNF.BaseAction.interference_subset_dom [ConNF.Params] {ξ : ConNF.BaseAction} {N₁ N₂ : ConNF.NearLitter} :
    N₁ ξ.domN₂ ξ.domConNF.interference N₁ N₂ ξ.dom
    theorem ConNF.BaseAction.interference_subset_codom [ConNF.Params] {ξ : ConNF.BaseAction} {N₁ N₂ : ConNF.NearLitter} :
    N₁ ξ.codomN₂ ξ.codomConNF.interference N₁ N₂ ξ.codom
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Instances For
        theorem ConNF.BaseAction.litters_iff [ConNF.Params] {ξ : ConNF.BaseAction} (L₁ L₂ : ConNF.Litter) :
        ξ L₁ L₂ ∃ (N₁ : ConNF.NearLitter) (N₂ : ConNF.NearLitter), N₁ = L₁ N₂ = L₂ ξ N₁ N₂
        def ConNF.BaseAction.extend [ConNF.Params] (ξ : ConNF.BaseAction) (r : Rel ConNF.Atom ConNF.Atom) (r_dom_small : ConNF.Small r.dom) (r_oneOne : r.OneOne) (r_dom_disjoint : Disjoint ξ.dom r.dom) (r_codom_disjoint : Disjoint ξ.codom r.codom) (r_mem_iff_mem : ∀ {a₁ a₂ : ConNF.Atom} {N₁ N₂ : ConNF.NearLitter}, r a₁ a₂ξ N₁ N₂(a₁ N₁ a₂ N₂)) :

        A definition that can be used to reduce the proof obligations of extending a base action.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem ConNF.BaseAction.le_extend [ConNF.Params] {ξ : ConNF.BaseAction} {r : Rel ConNF.Atom ConNF.Atom} {r_dom_small : ConNF.Small r.dom} {r_oneOne : r.OneOne} {r_dom_disjoint : Disjoint ξ.dom r.dom} {r_codom_disjoint : Disjoint ξ.codom r.codom} {r_mem_iff_mem : ∀ {a₁ a₂ : ConNF.Atom} {N₁ N₂ : ConNF.NearLitter}, r a₁ a₂ξ N₁ N₂(a₁ N₁ a₂ N₂)} :
          ξ ξ.extend r r_dom_small r_oneOne r_dom_disjoint r_codom_disjoint
          Instances For
            theorem ConNF.BaseAction.nice_iff [ConNF.Params] (ξ : ConNF.BaseAction) :
            ξ.Nice (∀ Nξ.dom, symmDiff N N ξ.dom) Nξ.codom, symmDiff N N ξ.codom
            theorem ConNF.BaseAction.Nice.mem_litter_dom_iff [ConNF.Params] {ξ : ConNF.BaseAction} (h : ξ.Nice) {N : ConNF.NearLitter} (hN : N ξ.dom) {a : ConNF.Atom} (ha : aξ.dom) :
            theorem ConNF.BaseAction.Nice.mem_litter_codom_iff [ConNF.Params] {ξ : ConNF.BaseAction} (h : ξ.Nice) {N : ConNF.NearLitter} (hN : N ξ.codom) {a : ConNF.Atom} (ha : aξ.codom) :

            Extending orbits inside near-litters #

            The set of atoms contained in near-litters but not the corresponding litters.

            Equations
            Instances For
              Instances For
                theorem ConNF.BaseAction.insideCandidate_iff [ConNF.Params] (ξ : ConNF.BaseAction) (L : ConNF.Litter) (a : ConNF.Atom) :
                ξ.InsideCandidate L a a = L aξ.codom ∀ {N : ConNF.NearLitter}, N ξ.codomN = La N
                def ConNF.BaseAction.insideMap [ConNF.Params] (ξ : ConNF.BaseAction) (L : ConNF.Litter) :
                ξ.inside {a : ConNF.Atom | ξ.InsideCandidate L a}
                Equations
                Instances For
                  theorem ConNF.BaseAction.insideMap_litter_eq [ConNF.Params] {ξ : ConNF.BaseAction} (L : ConNF.Litter) (x : ξ.inside) :
                  (↑((ξ.insideMap L) x)) = L
                  theorem ConNF.BaseAction.insideMap_not_mem_codom [ConNF.Params] {ξ : ConNF.BaseAction} (L : ConNF.Litter) (x : ξ.inside) :
                  ((ξ.insideMap L) x)ξ.codom
                  theorem ConNF.BaseAction.insideMap_mem_nearLitter [ConNF.Params] {ξ : ConNF.BaseAction} (L : ConNF.Litter) (x : ξ.inside) {N : ConNF.NearLitter} :
                  N ξ.codomN = L((ξ.insideMap L) x) N
                  Equations
                  Instances For
                    theorem ConNF.BaseAction.insideRel_mem_iff_mem [ConNF.Params] {ξ : ConNF.BaseAction} {a₁ a₂ : ConNF.Atom} {N₁ N₂ : ConNF.NearLitter} (ha : ξ.insideRel a₁ a₂) (hN : ξ N₁ N₂) :
                    a₁ N₁ a₂ N₂
                    Equations
                    • ξ.insideExtension = ξ.extend ξ.insideRel
                    Instances For
                      theorem ConNF.BaseAction.insideExtension_atoms [ConNF.Params] (ξ : ConNF.BaseAction) :
                      ξ.insideExtension = ξ ξ.insideRel
                      theorem ConNF.BaseAction.insideExtension_spec [ConNF.Params] {ξ : ConNF.BaseAction} (N : ConNF.NearLitter) (hN : N ξ.dom) :
                      N \ N ξ.insideExtension.dom

                      Extending orbits outside near-litters #

                      Instances For
                        theorem ConNF.BaseAction.sandbox_iff [ConNF.Params] (ξ : ConNF.BaseAction) (L : ConNF.Litter) :
                        ξ.Sandbox L (∀ aξ.codom, a L) ∀ (N : ConNF.NearLitter) (a : ConNF.Atom), a = LN ξ.codomaN
                        def ConNF.BaseAction.not_sandbox_eq [ConNF.Params] (ξ : ConNF.BaseAction) :
                        {L : ConNF.Litter | ¬ξ.Sandbox L} = (⋃ aξ.codom, {a}) Nξ.codom, aN, {a}
                        Equations
                        • =
                        Instances For
                          Equations
                          • ξ.sandbox = .some
                          Instances For
                            theorem ConNF.BaseAction.sandbox_spec [ConNF.Params] (ξ : ConNF.BaseAction) :
                            ξ.Sandbox ξ.sandbox
                            Equations
                            Instances For
                              def ConNF.BaseAction.outsideMap [ConNF.Params] (ξ : ConNF.BaseAction) :
                              ξ.outside ξ.sandbox
                              Equations
                              Instances For
                                theorem ConNF.BaseAction.outsideMap_litter [ConNF.Params] {ξ : ConNF.BaseAction} (x : ξ.outside) :
                                ξ.Sandbox (↑(ξ.outsideMap x))
                                Equations
                                • ξ.outsideRel a₁ a₂ = (a₁ξ.dom ∃ (h : a₁ ξ.outside), a₂ = (ξ.outsideMap a₁, h))
                                Instances For
                                  theorem ConNF.BaseAction.outsideRel_mem_iff_mem [ConNF.Params] {ξ : ConNF.BaseAction} (hξ : Nξ.dom, N \ N ξ.dom) {a₁ a₂ : ConNF.Atom} {N₁ N₂ : ConNF.NearLitter} (ha : ξ.outsideRel a₁ a₂) (hN : ξ N₁ N₂) :
                                  a₁ N₁ a₂ N₂
                                  Equations
                                  • ξ.outsideExtension = ξ.extend ξ.outsideRel
                                  Instances For
                                    theorem ConNF.BaseAction.outsideExtension_atoms [ConNF.Params] (ξ : ConNF.BaseAction) (hξ : Nξ.dom, N \ N ξ.dom) :
                                    (ξ.outsideExtension ) = ξ ξ.outsideRel
                                    theorem ConNF.BaseAction.le_outsideExtension [ConNF.Params] (ξ : ConNF.BaseAction) (hξ : Nξ.dom, N \ N ξ.dom) :
                                    ξ ξ.outsideExtension
                                    theorem ConNF.BaseAction.outsideExtension_spec [ConNF.Params] {ξ : ConNF.BaseAction} {hξ : Nξ.dom, N \ N ξ.dom} (N : ConNF.NearLitter) (hN : N ξ.dom) :
                                    N \ N (ξ.outsideExtension ).dom

                                    Nice extensions #

                                    Equations
                                    • ξ.doubleInsideExtension = ξ.insideExtension⁻¹.insideExtension⁻¹
                                    Instances For
                                      theorem ConNF.BaseAction.doubleInsideExtension_dom [ConNF.Params] {ξ : ConNF.BaseAction} (N : ConNF.NearLitter) (hN : N ξ.dom) :
                                      N \ N ξ.doubleInsideExtension.dom
                                      theorem ConNF.BaseAction.doubleInsideExtension_codom [ConNF.Params] {ξ : ConNF.BaseAction} (N : ConNF.NearLitter) (hN : N ξ.codom) :
                                      N \ N ξ.doubleInsideExtension.codom
                                      theorem ConNF.BaseAction.niceExtension_aux [ConNF.Params] {ξ : ConNF.BaseAction} (N : ConNF.NearLitter) (hN : N ξ.codom) :
                                      N \ N (ξ.doubleInsideExtension.outsideExtension )⁻¹.dom
                                      Equations
                                      • ξ.niceExtension = ((ξ.doubleInsideExtension.outsideExtension )⁻¹.outsideExtension )⁻¹
                                      Instances For