- nearLitters : X → Rel NearLitter NearLitter
- nearLitters_oneOne (ξ : X) : (nearLitters ξ).OneOne
Instances
Equations
instance
ConNF.instSuperNRelNearLitterOfBaseActionClass
[Params]
{X : Type u_1}
[BaseActionClass X]
:
Equations
Equations
- ConNF.instSMulBaseSupportOfBaseActionClass = { smul := fun (ξ : X) (S : ConNF.BaseSupport) => { atoms := Sᴬ.comp ξᴬ ⋯, nearLitters := Sᴺ.comp ξᴺ ⋯ } }
instance
ConNF.instSMulTreeSupportOfBaseActionClass
[Params]
{X : Type u_1}
[BaseActionClass X]
{β : TypeIndex}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
ConNF.smul_nearLitters
[Params]
{X : Type u_1}
[BaseActionClass X]
(ξ : X)
(S : BaseSupport)
:
structure
ConNF.CoherentAt
[Params]
{β : TypeIndex}
[Level]
[CoherentData]
[LeLevel β]
{X : Type u_1}
[BaseActionClass X]
(ξ : Tree X β)
(A : β ↝ ⊥)
(L₁ L₂ : Litter)
:
ξ
is defined coherently at (A, L₁, L₂)
(or could be defined coherently at this triple).
Instances For
theorem
ConNF.smul_eq_of_coherentAt_inflexible
[Params]
{β : TypeIndex}
[Level]
[CoherentData]
[LeLevel β]
{X : Type u_1}
[BaseActionClass X]
{ξ : Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : Litter}
{P : InflexiblePath β}
{t : Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₁ = fuzz ⋯ t)
(h : CoherentAt ξ A L₁ L₂)
(ρ : AllPerm P.δ)
:
theorem
ConNF.coherentAt_flexible
[Params]
{β : TypeIndex}
[Level]
[CoherentData]
[LeLevel β]
{X : Type u_1}
[BaseActionClass X]
{ξ : Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : Litter}
(hL : ¬Inflexible A L₁)
:
theorem
ConNF.smul_eq_of_coherentAt_inflexible'
[Params]
{β : TypeIndex}
[Level]
[CoherentData]
[LeLevel β]
{X : Type u_1}
[BaseActionClass X]
{ξ : Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : Litter}
{P : InflexiblePath β}
{t : Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₂ = fuzz ⋯ t)
(h : CoherentAt ξ A L₁ L₂)
(ρ : AllPerm P.δ)
:
theorem
ConNF.CoherentAt.deriv
[Params]
{β : TypeIndex}
[Level]
[CoherentData]
[LeLevel β]
{γ : TypeIndex}
[LeLevel γ]
{X : Type u_1}
[BaseActionClass X]
{ξ : Tree X β}
{L₁ L₂ : Litter}
(A : β ↝ γ)
(B : γ ↝ ⊥)
(h : CoherentAt ξ (A ⇘ B) L₁ L₂)
:
CoherentAt (ξ ⇘ A) B L₁ L₂