Documentation

ConNF.FOA.Coherent

New file #

In this file...

Main declarations #

class ConNF.BaseActionClass [Params] (X : Type u_1) :
Type (max u u_1)
Instances
    Equations
    Equations
    • One or more equations did not get rendered due to their size.
    theorem ConNF.smul_atoms [Params] {X : Type u_1} [BaseActionClass X] (ξ : X) (S : BaseSupport) :
    (ξ S) = S.comp ξ
    theorem ConNF.smul_nearLitters [Params] {X : Type u_1} [BaseActionClass X] (ξ : X) (S : BaseSupport) :
    (ξ S) = S.comp ξ
    theorem ConNF.smul_baseSupport_eq_smul_iff [Params] {X : Type u_1} [BaseActionClass X] (ξ : X) (S : BaseSupport) (π : BasePerm) :
    ξ S = π S (∀ aS, ξ a (π a)) NS, ξ N (π N)
    @[simp]
    theorem ConNF.smul_support_derivBot [Params] {β : TypeIndex} {X : Type u_1} [BaseActionClass X] (ξ : Tree X β) (S : Support β) (A : β ) :
    (ξ S) ⇘. A = ξ A S ⇘. A
    theorem ConNF.smul_support_eq_smul_iff [Params] {β : TypeIndex} {X : Type u_1} [BaseActionClass X] (ξ : Tree X β) (S : Support β) (π : StrPerm β) :
    ξ S = π S ∀ (A : β ), (∀ a ∈ (S ⇘. A), (ξ A) a (π A a)) N ∈ (S ⇘. A), (ξ A) N (π A N)
    theorem ConNF.smul_support_smul_eq_iff [Params] {β : TypeIndex} {X : Type u_1} [BaseActionClass X] (ξ : Tree X β) (S : Support β) (π : StrPerm β) :
    ξ π S = S ∀ (A : β ), (∀ a ∈ ((π S) ⇘. A), (ξ A) a (π⁻¹ A a)) N ∈ ((π S) ⇘. A), (ξ A) N (π⁻¹ A N)
    structure ConNF.CoherentAt [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] (ξ : Tree X β) (A : β ) (L₁ L₂ : Litter) :

    ξ is defined coherently at (A, L₁, L₂) (or could be defined coherently at this triple).

    Instances For
      theorem ConNF.coherentAt_inflexible [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {A : β } {L₁ L₂ : Litter} {P : InflexiblePath β} {t : Tangle P.δ} (hA : A = P.A ↘.) (ht : L₁ = fuzz t) :
      CoherentAt ξ A L₁ L₂ ∃ (ρ : AllPerm P.δ), ξ P.A t.support = ρ t.support L₂ = fuzz (ρ t)
      theorem ConNF.smul_eq_of_coherentAt_inflexible [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {A : β } {L₁ L₂ : Litter} {P : InflexiblePath β} {t : Tangle P.δ} (hA : A = P.A ↘.) (ht : L₁ = fuzz t) (h : CoherentAt ξ A L₁ L₂) (ρ : AllPerm P.δ) :
      ξ P.A t.support = ρ t.supportL₂ = fuzz (ρ t)
      theorem ConNF.coherentAt_flexible [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {A : β } {L₁ L₂ : Litter} (hL : ¬Inflexible A L₁) :
      CoherentAt ξ A L₁ L₂ ¬Inflexible A L₂
      theorem ConNF.coherentAt_inflexible' [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {A : β } {L₁ L₂ : Litter} {P : InflexiblePath β} {t : Tangle P.δ} (hA : A = P.A ↘.) (ht : L₂ = fuzz t) :
      CoherentAt ξ A L₁ L₂ ∃ (ρ : AllPerm P.δ), ξ P.A ρ t.support = t.support L₁ = fuzz (ρ t)
      theorem ConNF.smul_eq_of_coherentAt_inflexible' [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {A : β } {L₁ L₂ : Litter} {P : InflexiblePath β} {t : Tangle P.δ} (hA : A = P.A ↘.) (ht : L₂ = fuzz t) (h : CoherentAt ξ A L₁ L₂) (ρ : AllPerm P.δ) :
      ξ P.A ρ t.support = t.supportL₁ = fuzz (ρ t)
      theorem ConNF.CoherentAt.deriv [Params] {β : TypeIndex} [Level] [CoherentData] [LeLevel β] {γ : TypeIndex} [LeLevel γ] {X : Type u_1} [BaseActionClass X] {ξ : Tree X β} {L₁ L₂ : Litter} (A : β γ) (B : γ ) (h : CoherentAt ξ (A B) L₁ L₂) :
      CoherentAt (ξ A) B L₁ L₂