Documentation

ConNF.FOA.Coherent

New file #

In this file...

Main declarations #

class ConNF.BaseActionClass [ConNF.Params] (X : Type u_1) :
Type (max u u_1)
Instances
    Equations
    • ConNF.instSuperARelAtomOfBaseActionClass = { superA := ConNF.BaseActionClass.atoms }
    instance ConNF.instSuperNRelNearLitterOfBaseActionClass [ConNF.Params] {X : Type u_1} [ConNF.BaseActionClass X] :
    ConNF.SuperN X (Rel ConNF.NearLitter ConNF.NearLitter)
    Equations
    • ConNF.instSuperNRelNearLitterOfBaseActionClass = { superN := ConNF.BaseActionClass.nearLitters }
    Equations
    • ConNF.instSMulBaseSupportOfBaseActionClass = { smul := fun (ξ : X) (S : ConNF.BaseSupport) => { atoms := S.comp ξ , nearLitters := S.comp ξ } }
    Equations
    • One or more equations did not get rendered due to their size.
    theorem ConNF.smul_atoms [ConNF.Params] {X : Type u_1} [ConNF.BaseActionClass X] (ξ : X) (S : ConNF.BaseSupport) :
    (ξ S) = S.comp ξ
    theorem ConNF.smul_nearLitters [ConNF.Params] {X : Type u_1} [ConNF.BaseActionClass X] (ξ : X) (S : ConNF.BaseSupport) :
    (ξ S) = S.comp ξ
    theorem ConNF.smul_baseSupport_eq_smul_iff [ConNF.Params] {X : Type u_1} [ConNF.BaseActionClass X] (ξ : X) (S : ConNF.BaseSupport) (π : ConNF.BasePerm) :
    ξ S = π S (∀ aS, ξ a (π a)) NS, ξ N (π N)
    @[simp]
    theorem ConNF.smul_support_derivBot [ConNF.Params] {β : ConNF.TypeIndex} {X : Type u_1} [ConNF.BaseActionClass X] (ξ : ConNF.Tree X β) (S : ConNF.Support β) (A : β ) :
    (ξ S) ⇘. A = ξ A S ⇘. A
    theorem ConNF.smul_support_eq_smul_iff [ConNF.Params] {β : ConNF.TypeIndex} {X : Type u_1} [ConNF.BaseActionClass X] (ξ : ConNF.Tree X β) (S : ConNF.Support β) (π : ConNF.StrPerm β) :
    ξ S = π S ∀ (A : β ), (∀ a(S ⇘. A), (ξ A) a (π A a)) N(S ⇘. A), (ξ A) N (π A N)
    theorem ConNF.smul_support_smul_eq_iff [ConNF.Params] {β : ConNF.TypeIndex} {X : Type u_1} [ConNF.BaseActionClass X] (ξ : ConNF.Tree X β) (S : ConNF.Support β) (π : ConNF.StrPerm β) :
    ξ π S = S ∀ (A : β ), (∀ a((π S) ⇘. A), (ξ A) a (π⁻¹ A a)) N((π S) ⇘. A), (ξ A) N (π⁻¹ A N)
    structure ConNF.CoherentAt [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] (ξ : ConNF.Tree X β) (A : β ) (L₁ L₂ : ConNF.Litter) :

    ξ is defined coherently at (A, L₁, L₂) (or could be defined coherently at this triple).

    Instances For
      theorem ConNF.coherentAt_inflexible [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {A : β } {L₁ L₂ : ConNF.Litter} {P : ConNF.InflexiblePath β} {t : ConNF.Tangle P} (hA : A = P.A ↘.) (ht : L₁ = ConNF.fuzz t) :
      ConNF.CoherentAt ξ A L₁ L₂ ∃ (ρ : ConNF.AllPerm P), ξ P.A t.support = ρ t.support L₂ = ConNF.fuzz (ρ t)
      theorem ConNF.smul_eq_of_coherentAt_inflexible [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {A : β } {L₁ L₂ : ConNF.Litter} {P : ConNF.InflexiblePath β} {t : ConNF.Tangle P} (hA : A = P.A ↘.) (ht : L₁ = ConNF.fuzz t) (h : ConNF.CoherentAt ξ A L₁ L₂) (ρ : ConNF.AllPerm P) :
      ξ P.A t.support = ρ t.supportL₂ = ConNF.fuzz (ρ t)
      theorem ConNF.coherentAt_flexible [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {A : β } {L₁ L₂ : ConNF.Litter} (hL : ¬ConNF.Inflexible A L₁) :
      theorem ConNF.coherentAt_inflexible' [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {A : β } {L₁ L₂ : ConNF.Litter} {P : ConNF.InflexiblePath β} {t : ConNF.Tangle P} (hA : A = P.A ↘.) (ht : L₂ = ConNF.fuzz t) :
      ConNF.CoherentAt ξ A L₁ L₂ ∃ (ρ : ConNF.AllPerm P), ξ P.A ρ t.support = t.support L₁ = ConNF.fuzz (ρ t)
      theorem ConNF.smul_eq_of_coherentAt_inflexible' [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {A : β } {L₁ L₂ : ConNF.Litter} {P : ConNF.InflexiblePath β} {t : ConNF.Tangle P} (hA : A = P.A ↘.) (ht : L₂ = ConNF.fuzz t) (h : ConNF.CoherentAt ξ A L₁ L₂) (ρ : ConNF.AllPerm P) :
      ξ P.A ρ t.support = t.supportL₁ = ConNF.fuzz (ρ t)
      theorem ConNF.CoherentAt.deriv [ConNF.Params] {β : ConNF.TypeIndex} [ConNF.Level] [ConNF.CoherentData] [ConNF.LeLevel β] {γ : ConNF.TypeIndex} [ConNF.LeLevel γ] {X : Type u_1} [ConNF.BaseActionClass X] {ξ : ConNF.Tree X β} {L₁ L₂ : ConNF.Litter} (A : β γ) (B : γ ) (h : ConNF.CoherentAt ξ (A B) L₁ L₂) :
      ConNF.CoherentAt (ξ A) B L₁ L₂