- atoms : X → Rel ConNF.Atom ConNF.Atom
- atoms_oneOne : ∀ (ξ : X), (ConNF.BaseActionClass.atoms ξ).OneOne
- nearLitters : X → Rel ConNF.NearLitter ConNF.NearLitter
- nearLitters_oneOne : ∀ (ξ : X), (ConNF.BaseActionClass.nearLitters ξ).OneOne
Instances
instance
ConNF.instSuperARelAtomOfBaseActionClass
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
:
ConNF.SuperA X (Rel ConNF.Atom ConNF.Atom)
Equations
- ConNF.instSuperARelAtomOfBaseActionClass = { superA := ConNF.BaseActionClass.atoms }
instance
ConNF.instSuperNRelNearLitterOfBaseActionClass
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
:
ConNF.SuperN X (Rel ConNF.NearLitter ConNF.NearLitter)
Equations
- ConNF.instSuperNRelNearLitterOfBaseActionClass = { superN := ConNF.BaseActionClass.nearLitters }
instance
ConNF.instSMulBaseSupportOfBaseActionClass
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
:
SMul X ConNF.BaseSupport
instance
ConNF.instSMulTreeSupportOfBaseActionClass
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
{β : ConNF.TypeIndex}
:
SMul (ConNF.Tree X β) (ConNF.Support β)
Equations
- One or more equations did not get rendered due to their size.
theorem
ConNF.smul_atoms
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : X)
(S : ConNF.BaseSupport)
:
theorem
ConNF.smul_nearLitters
[ConNF.Params]
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : X)
(S : ConNF.BaseSupport)
:
@[simp]
theorem
ConNF.smul_support_derivBot
[ConNF.Params]
{β : ConNF.TypeIndex}
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : ConNF.Tree X β)
(S : ConNF.Support β)
(A : β ↝ ⊥)
:
theorem
ConNF.smul_support_eq_smul_iff
[ConNF.Params]
{β : ConNF.TypeIndex}
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : ConNF.Tree X β)
(S : ConNF.Support β)
(π : ConNF.StrPerm β)
:
theorem
ConNF.smul_support_smul_eq_iff
[ConNF.Params]
{β : ConNF.TypeIndex}
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : ConNF.Tree X β)
(S : ConNF.Support β)
(π : ConNF.StrPerm β)
:
structure
ConNF.CoherentAt
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
(ξ : ConNF.Tree X β)
(A : β ↝ ⊥)
(L₁ L₂ : ConNF.Litter)
:
ξ
is defined coherently at (A, L₁, L₂)
(or could be defined coherently at this triple).
- inflexible : ∀ (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P.δ), A = P.A ↘ ⋯ ↘. → L₁ = ConNF.fuzz ⋯ t → ∃ (ρ : ConNF.AllPerm P.δ), ξ ⇘ P.A ↘ ⋯ • t.support = ρᵁ • t.support ∧ L₂ = ConNF.fuzz ⋯ (ρ • t)
- flexible : ¬ConNF.Inflexible A L₁ → ¬ConNF.Inflexible A L₂
Instances For
theorem
ConNF.coherentAt_inflexible
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : ConNF.Litter}
{P : ConNF.InflexiblePath β}
{t : ConNF.Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₁ = ConNF.fuzz ⋯ t)
:
ConNF.CoherentAt ξ A L₁ L₂ ↔ ∃ (ρ : ConNF.AllPerm P.δ), ξ ⇘ P.A ↘ ⋯ • t.support = ρᵁ • t.support ∧ L₂ = ConNF.fuzz ⋯ (ρ • t)
theorem
ConNF.smul_eq_of_coherentAt_inflexible
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : ConNF.Litter}
{P : ConNF.InflexiblePath β}
{t : ConNF.Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₁ = ConNF.fuzz ⋯ t)
(h : ConNF.CoherentAt ξ A L₁ L₂)
(ρ : ConNF.AllPerm P.δ)
:
theorem
ConNF.coherentAt_flexible
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : ConNF.Litter}
(hL : ¬ConNF.Inflexible A L₁)
:
ConNF.CoherentAt ξ A L₁ L₂ ↔ ¬ConNF.Inflexible A L₂
theorem
ConNF.coherentAt_inflexible'
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : ConNF.Litter}
{P : ConNF.InflexiblePath β}
{t : ConNF.Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₂ = ConNF.fuzz ⋯ t)
:
ConNF.CoherentAt ξ A L₁ L₂ ↔ ∃ (ρ : ConNF.AllPerm P.δ), ξ ⇘ P.A ↘ ⋯ • ρᵁ • t.support = t.support ∧ L₁ = ConNF.fuzz ⋯ (ρ • t)
theorem
ConNF.smul_eq_of_coherentAt_inflexible'
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{A : β ↝ ⊥}
{L₁ L₂ : ConNF.Litter}
{P : ConNF.InflexiblePath β}
{t : ConNF.Tangle P.δ}
(hA : A = P.A ↘ ⋯ ↘.)
(ht : L₂ = ConNF.fuzz ⋯ t)
(h : ConNF.CoherentAt ξ A L₁ L₂)
(ρ : ConNF.AllPerm P.δ)
:
theorem
ConNF.CoherentAt.deriv
[ConNF.Params]
{β : ConNF.TypeIndex}
[ConNF.Level]
[ConNF.CoherentData]
[ConNF.LeLevel β]
{γ : ConNF.TypeIndex}
[ConNF.LeLevel γ]
{X : Type u_1}
[ConNF.BaseActionClass X]
{ξ : ConNF.Tree X β}
{L₁ L₂ : ConNF.Litter}
(A : β ↝ γ)
(B : γ ↝ ⊥)
(h : ConNF.CoherentAt ξ (A ⇘ B) L₁ L₂)
:
ConNF.CoherentAt (ξ ⇘ A) B L₁ L₂