Documentation
ConNF
.
Model
.
RunInduction
Search
return to top
source
Imports
Init
ConNF.Background.InductiveConstruction
ConNF.Model.ConstructHypothesis
Imported by
ConNF
.
instIsTransΛLtWithBotSome
ConNF
.
instIsWellFoundedΛLtWithBotSome
ConNF
.
motive
ConNF
.
hypothesis
ConNF
.
motive_eq
New file
#
In this file...
Main declarations
#
ConNF.foo
: Something new.
source
instance
ConNF
.
instIsTransΛLtWithBotSome
[
Params
]
:
IsTrans
Λ
fun (
β
γ
:
Λ
) =>
↑
β
<
↑
γ
source
instance
ConNF
.
instIsWellFoundedΛLtWithBotSome
[
Params
]
:
IsWellFounded
Λ
fun (
β
γ
:
Λ
) =>
↑
β
<
↑
γ
source
def
ConNF
.
motive
[
Params
]
(
α
:
Λ
)
:
Motive
α
Equations
ConNF.motive
=
ICT.fix
ConNF.constructMotive
ConNF.constructHypothesis
Instances For
source
def
ConNF
.
hypothesis
[
Params
]
(
α
:
Λ
)
:
Hypothesis
(
motive
α
)
fun (
β
:
Λ
) (
x
:
↑
β
<
↑
α
) =>
motive
β
Equations
ConNF.hypothesis
=
ICT.fix_prop
ConNF.constructMotive
ConNF.constructHypothesis
Instances For
source
theorem
ConNF
.
motive_eq
[
Params
]
(
α
:
Λ
)
:
motive
α
=
constructMotive
α
(fun (
β
:
Λ
) (
x
:
↑
β
<
↑
α
) =>
motive
β
)
fun (
β
:
Λ
) (
x
:
↑
β
<
↑
α
) =>
hypothesis
β