theorem
ConNF.instIsWellFoundedΛLtWithBotSome
[ConNF.Params]
:
IsWellFounded ConNF.Λ fun (β γ : ConNF.Λ) => ↑β < ↑γ
Instances For
def
ConNF.hypothesis
[ConNF.Params]
(α : ConNF.Λ)
:
ConNF.Hypothesis (ConNF.motive α) fun (β : ConNF.Λ) (x : ↑β < ↑α) => ConNF.motive β
Equations
- ConNF.hypothesis = ICT.fix_prop ConNF.constructMotive ConNF.constructHypothesis
Instances For
theorem
ConNF.motive_eq
[ConNF.Params]
(α : ConNF.Λ)
:
ConNF.motive α = ConNF.constructMotive α (fun (β : ConNF.Λ) (x : ↑β < ↑α) => ConNF.motive β) fun (β : ConNF.Λ) (x : ↑β < ↑α) =>
ConNF.hypothesis β