def
ConNF.ltData
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
:
ConNF.LtData
Equations
- ConNF.ltData M = ConNF.LtData.mk
Instances For
def
ConNF.newModelData'
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
:
Equations
- ConNF.newModelData' M = ConNF.newModelData
Instances For
def
ConNF.leData
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
:
ConNF.LeData
Equations
- ConNF.leData M = ConNF.LeData.mk
Instances For
theorem
ConNF.leData_data_bot
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
:
ConNF.LeData.data ⊥ = ConNF.botModelData
theorem
ConNF.leData_data_lt
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
:
ConNF.LeData.data ↑β = (M β hβ).data
theorem
ConNF.leData_data_eq
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
:
@[reducible, inline]
abbrev
ConNF.TSetLe
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(β : ConNF.TypeIndex)
(hβ : β ≤ ↑α)
:
Type u
Equations
- ConNF.TSetLe M β hβ = ConNF.TSet β
Instances For
@[reducible, inline]
abbrev
ConNF.AllPermLe
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(β : ConNF.TypeIndex)
(hβ : β ≤ ↑α)
:
Type u
Equations
- ConNF.AllPermLe M β hβ = ConNF.AllPerm β
Instances For
@[reducible, inline]
abbrev
ConNF.TangleLe
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(β : ConNF.TypeIndex)
(hβ : β ≤ ↑α)
:
Type u
Equations
- ConNF.TangleLe M β hβ = ConNF.Tangle β
Instances For
def
ConNF.castTSetLeLt
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
:
ConNF.TSetLe M ↑β ⋯ ≃ ConNF.TSet ↑β
Equations
- ConNF.castTSetLeLt M hβ = ConNF.castTSet ⋯ ⋯
Instances For
def
ConNF.castTSetLeEq
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β = ↑α)
:
ConNF.TSetLe M ↑β ⋯ ≃ ConNF.TSet ↑α
Equations
- ConNF.castTSetLeEq M hβ = ConNF.castTSet hβ ⋯
Instances For
def
ConNF.castAllPermLeLt
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
:
ConNF.AllPermLe M ↑β ⋯ ≃ ConNF.AllPerm ↑β
Equations
- ConNF.castAllPermLeLt M hβ = ConNF.castAllPerm ⋯ ⋯
Instances For
def
ConNF.castAllPermLeEq
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β = ↑α)
:
ConNF.AllPermLe M ↑β ⋯ ≃ ConNF.AllPerm ↑α
Equations
- ConNF.castAllPermLeEq M hβ = ConNF.castAllPerm hβ ⋯
Instances For
def
ConNF.castTangleLeLt
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
:
ConNF.TangleLe M ↑β ⋯ ≃ ConNF.Tangle ↑β
Equations
- ConNF.castTangleLeLt M hβ = ConNF.castTangle ⋯ ⋯
Instances For
def
ConNF.castTangleLeEq
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β = ↑α)
:
ConNF.TangleLe M ↑β ⋯ ≃ ConNF.Tangle ↑α
Equations
- ConNF.castTangleLeEq M hβ = ConNF.castTangle hβ ⋯
Instances For
theorem
ConNF.castTSetLeLt_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x : ConNF.TSetLe M ↑β ⋯)
:
theorem
ConNF.castTSetLeEq_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(x : ConNF.TSetLe M ↑α ⋯)
:
theorem
ConNF.castAllPermLeLt_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(ρ : ConNF.AllPermLe M ↑β ⋯)
:
theorem
ConNF.castAllPermLeEq_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(ρ : ConNF.AllPermLe M ↑α ⋯)
:
theorem
ConNF.castTangleLeLt_support
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(t : ConNF.TangleLe M ↑β ⋯)
:
((ConNF.castTangleLeLt M hβ) t).support = t.support
theorem
ConNF.castAllPermLeLt_smul
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(ρ : ConNF.AllPerm ↑β)
(t : ConNF.TangleLe M ↑β ⋯)
:
ρ • (ConNF.castTangleLeLt M hβ) t = (ConNF.castTangleLeLt M hβ) ((ConNF.castAllPermLeLt M hβ).symm ρ • t)
theorem
ConNF.castAllPermLeLt_smul'
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(ρ : ConNF.AllPermLe M ↑β ⋯)
(t : ConNF.TangleLe M ↑β ⋯)
:
(ConNF.castTangleLeLt M hβ) (ρ • t) = (ConNF.castAllPermLeLt M hβ) ρ • (ConNF.castTangleLeLt M hβ) t
theorem
ConNF.castAllPermLeLt_smul''
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(ρ : ConNF.AllPermLe M ↑β ⋯)
(t : ConNF.Tangle ↑β)
:
(ConNF.castAllPermLeLt M hβ) ρ • t = (ConNF.castTangleLeLt M hβ) (ρ • (ConNF.castTangleLeLt M hβ).symm t)
theorem
ConNF.castTangleLeLt_pos
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(t : ConNF.TangleLe M ↑β ⋯)
:
ConNF.pos ((ConNF.castTangleLeLt M hβ) t) = ConNF.pos t
theorem
ConNF.castTangleLeLt_fuzz
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(t : ConNF.TangleLe M ↑β ⋯)
{γ : ConNF.Λ}
(hβγ : ↑β ≠ ↑γ)
:
ConNF.fuzz hβγ ((ConNF.castTangleLeLt M hβ) t) = ConNF.fuzz hβγ t
def
ConNF.preCoherentData
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
:
ConNF.PreCoherentData
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ConNF.preCoherentData_allPermSderiv_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β γ : ConNF.TypeIndex}
[iβ : ConNF.LeLevel β]
[iγ : ConNF.LeLevel γ]
(hγ : γ < β)
(ρ : ConNF.AllPermLe M β ⋯)
:
theorem
ConNF.preCoherentData_pos_atom_lt_pos
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.TypeIndex}
[iβ : ConNF.LtLevel β]
(t : ConNF.TangleLe M β ⋯)
(A : β ↝ ⊥)
(a : ConNF.Atom)
(ha : a ∈ (t.support ⇘. A)ᴬ)
:
ConNF.pos a < ConNF.pos t
theorem
ConNF.preCoherentData_pos_nearLitter_lt_pos
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.TypeIndex}
[iβ : ConNF.LtLevel β]
(t : ConNF.TangleLe M β ⋯)
(A : β ↝ ⊥)
(N : ConNF.NearLitter)
(hN : N ∈ (t.support ⇘. A)ᴺ)
:
ConNF.pos N < ConNF.pos t
theorem
ConNF.preCoherentData_smul_fuzz
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
{γ : ConNF.TypeIndex}
{δ : ConNF.Λ}
[iβ : ConNF.LeLevel ↑β]
[iγ : ConNF.LtLevel γ]
[iδ : ConNF.LtLevel ↑δ]
(hγ : γ < ↑β)
(hδ : ↑δ < ↑β)
(hγδ : γ ≠ ↑δ)
(ρ : ConNF.AllPermLe M ↑β ⋯)
(t : ConNF.TangleLe M γ ⋯)
:
ConNF.PreModelData.allPermForget ρ ↘ hδ ↘. • ConNF.fuzz hγδ t = ConNF.fuzz hγδ (ConNF.PreCoherentData.allPermSderiv hγ ρ • t)
theorem
ConNF.preCoherentData_allPerm_of_smulFuzz
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
[iβ : ConNF.LeLevel ↑β]
(ρs : {γ : ConNF.TypeIndex} → [inst : ConNF.LtLevel γ] → γ < ↑β → ConNF.AllPermLe M γ ⋯)
(hρs :
∀ {γ : ConNF.TypeIndex} {δ : ConNF.Λ} [inst : ConNF.LtLevel γ] [inst_1 : ConNF.LtLevel ↑δ] (hγ : γ < ↑β)
(hδ : ↑δ < ↑β) (hγδ : γ ≠ ↑δ) (t : ConNF.TangleLe M γ ⋯),
ConNF.PreModelData.allPermForget (ρs hδ) ↘. • ConNF.fuzz hγδ t = ConNF.fuzz hγδ (ρs hγ • t))
:
∃ (ρ : ConNF.AllPermLe M ↑β ⋯),
∀ (γ : ConNF.TypeIndex) [inst : ConNF.LtLevel γ] (hγ : γ < ↑β), ConNF.PreCoherentData.allPermSderiv hγ ρ = ρs hγ
theorem
ConNF.preCoherent_tSet_ext
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β γ : ConNF.Λ}
[iβ : ConNF.LeLevel ↑β]
[iγ : ConNF.LeLevel ↑γ]
(hγ : ↑γ < ↑β)
(x y : ConNF.TSetLe M ↑β ⋯)
(hxy : ∀ (z : ConNF.TSetLe M ↑γ ⋯), z ∈[hγ] x ↔ z ∈[hγ] y)
:
x = y
theorem
ConNF.typedMem_singleton_iff
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β γ : ConNF.Λ}
[iβ : ConNF.LeLevel ↑β]
[iγ : ConNF.LeLevel ↑γ]
(hγ : ↑γ < ↑β)
(x y : ConNF.TSetLe M ↑γ ⋯)
:
y ∈[hγ] ConNF.singleton hγ x ↔ y = x
def
ConNF.coherentData
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
:
ConNF.CoherentData
Equations
- ConNF.coherentData M H = ConNF.CoherentData.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
theorem
ConNF.newModelData_card_tangle_le
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
:
Cardinal.mk (ConNF.Tangle ↑α) ≤ Cardinal.mk ConNF.μ
def
ConNF.constructMotive
[ConNF.Params]
(α : ConNF.Λ)
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
:
Equations
- ConNF.constructMotive α M H = { data := ConNF.newModelData, pos := ConNF.newPosition ⋯, typed := ConNF.newTypedNearLitters ⋯ }