Documentation

ConNF.Model.ConstructMotive

New file #

In this file...

Main declarations #

def ConNF.ltData [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) :
ConNF.LtData
Equations
Instances For
    def ConNF.newModelData' [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) :
    Equations
    Instances For
      def ConNF.leData [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) :
      ConNF.LeData
      Equations
      Instances For
        theorem ConNF.leData_data_bot [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) :
        ConNF.LeData.data = ConNF.botModelData
        theorem ConNF.leData_data_lt [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) :
        ConNF.LeData.data β = (M β ).data
        theorem ConNF.leData_data_eq [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) :
        @[reducible, inline]
        abbrev ConNF.TSetLe [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (β : ConNF.TypeIndex) (hβ : β α) :
        Equations
        Instances For
          @[reducible, inline]
          abbrev ConNF.AllPermLe [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (β : ConNF.TypeIndex) (hβ : β α) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev ConNF.TangleLe [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (β : ConNF.TypeIndex) (hβ : β α) :
            Equations
            Instances For
              def ConNF.castTSetLeLt [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) :
              ConNF.TSetLe M β ConNF.TSet β
              Equations
              Instances For
                def ConNF.castTSetLeEq [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β = α) :
                ConNF.TSetLe M β ConNF.TSet α
                Equations
                Instances For
                  def ConNF.castAllPermLeLt [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) :
                  Equations
                  Instances For
                    def ConNF.castAllPermLeEq [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β = α) :
                    Equations
                    Instances For
                      def ConNF.castTangleLeLt [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) :
                      ConNF.TangleLe M β ConNF.Tangle β
                      Equations
                      Instances For
                        def ConNF.castTangleLeEq [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β = α) :
                        ConNF.TangleLe M β ConNF.Tangle α
                        Equations
                        Instances For
                          theorem ConNF.castTSetLeLt_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (x : ConNF.TSetLe M β ) :
                          theorem ConNF.castTSetLeEq_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (x : ConNF.TSetLe M α ) :
                          theorem ConNF.castAllPermLeLt_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (ρ : ConNF.AllPermLe M β ) :
                          theorem ConNF.castAllPermLeEq_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (ρ : ConNF.AllPermLe M α ) :
                          theorem ConNF.castTangleLeLt_support [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (t : ConNF.TangleLe M β ) :
                          ((ConNF.castTangleLeLt M ) t).support = t.support
                          theorem ConNF.castAllPermLeLt_smul [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (ρ : ConNF.AllPerm β) (t : ConNF.TangleLe M β ) :
                          ρ (ConNF.castTangleLeLt M ) t = (ConNF.castTangleLeLt M ) ((ConNF.castAllPermLeLt M ).symm ρ t)
                          theorem ConNF.castAllPermLeLt_smul' [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (ρ : ConNF.AllPermLe M β ) (t : ConNF.TangleLe M β ) :
                          theorem ConNF.castAllPermLeLt_smul'' [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (ρ : ConNF.AllPermLe M β ) (t : ConNF.Tangle β) :
                          (ConNF.castAllPermLeLt M ) ρ t = (ConNF.castTangleLeLt M ) (ρ (ConNF.castTangleLeLt M ).symm t)
                          theorem ConNF.castTangleLeLt_pos [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (t : ConNF.TangleLe M β ) :
                          ConNF.pos ((ConNF.castTangleLeLt M ) t) = ConNF.pos t
                          theorem ConNF.castTangleLeLt_fuzz [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) {β : ConNF.Λ} (hβ : β < α) (t : ConNF.TangleLe M β ) {γ : ConNF.Λ} (hβγ : β γ) :
                          ConNF.fuzz hβγ ((ConNF.castTangleLeLt M ) t) = ConNF.fuzz hβγ t
                          def ConNF.preCoherentData [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) :
                          ConNF.PreCoherentData
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem ConNF.preCoherentData_allPermSderiv_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β γ : ConNF.TypeIndex} [iβ : ConNF.LeLevel β] [iγ : ConNF.LeLevel γ] (hγ : γ < β) (ρ : ConNF.AllPermLe M β ) :
                            theorem ConNF.preCoherentData_pos_atom_lt_pos [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.TypeIndex} [iβ : ConNF.LtLevel β] (t : ConNF.TangleLe M β ) (A : β ) (a : ConNF.Atom) (ha : a (t.support ⇘. A)) :
                            ConNF.pos a < ConNF.pos t
                            theorem ConNF.preCoherentData_pos_nearLitter_lt_pos [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.TypeIndex} [iβ : ConNF.LtLevel β] (t : ConNF.TangleLe M β ) (A : β ) (N : ConNF.NearLitter) (hN : N (t.support ⇘. A)) :
                            ConNF.pos N < ConNF.pos t
                            theorem ConNF.preCoherentData_smul_fuzz [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} {γ : ConNF.TypeIndex} {δ : ConNF.Λ} [iβ : ConNF.LeLevel β] [iγ : ConNF.LtLevel γ] [iδ : ConNF.LtLevel δ] (hγ : γ < β) (hδ : δ < β) (hγδ : γ δ) (ρ : ConNF.AllPermLe M β ) (t : ConNF.TangleLe M γ ) :
                            theorem ConNF.preCoherentData_allPerm_of_smulFuzz [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} [iβ : ConNF.LeLevel β] (ρs : {γ : ConNF.TypeIndex} → [inst : ConNF.LtLevel γ] → γ < βConNF.AllPermLe M γ ) (hρs : ∀ {γ : ConNF.TypeIndex} {δ : ConNF.Λ} [inst : ConNF.LtLevel γ] [inst_1 : ConNF.LtLevel δ] ( : γ < β) ( : δ < β) (hγδ : γ δ) (t : ConNF.TangleLe M γ ), ConNF.PreModelData.allPermForget (ρs ) ↘. ConNF.fuzz hγδ t = ConNF.fuzz hγδ (ρs t)) :
                            ∃ (ρ : ConNF.AllPermLe M β ), ∀ (γ : ConNF.TypeIndex) [inst : ConNF.LtLevel γ] ( : γ < β), ConNF.PreCoherentData.allPermSderiv ρ = ρs
                            theorem ConNF.preCoherent_tSet_ext [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β γ : ConNF.Λ} [iβ : ConNF.LeLevel β] [iγ : ConNF.LeLevel γ] (hγ : γ < β) (x y : ConNF.TSetLe M β ) (hxy : ∀ (z : ConNF.TSetLe M γ ), z ∈[] x z ∈[] y) :
                            x = y
                            theorem ConNF.typedMem_singleton_iff [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β γ : ConNF.Λ} [iβ : ConNF.LeLevel β] [iγ : ConNF.LeLevel γ] (hγ : γ < β) (x y : ConNF.TSetLe M γ ) :
                            y ∈[] ConNF.singleton x y = x
                            def ConNF.coherentData [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) :
                            ConNF.CoherentData
                            Equations
                            Instances For
                              theorem ConNF.newModelData_card_tangle_le [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) :
                              def ConNF.constructMotive [ConNF.Params] (α : ConNF.Λ) (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) :
                              Equations
                              Instances For