class
ConNF.TypedNearLitters
[ConNF.Params]
(α : ConNF.Λ)
[ConNF.ModelData ↑α]
[ConNF.Position (ConNF.Tangle ↑α)]
:
Type u
- typed : ConNF.NearLitter → ConNF.TSet ↑α
- typed_injective : Function.Injective ConNF.typed
- pos_le_pos_of_typed : ∀ (N : ConNF.NearLitter) (t : ConNF.Tangle ↑α), t.set = ConNF.typed N → ConNF.pos N ≤ ConNF.pos t
- smul_typed : ∀ (ρ : ConNF.AllPerm ↑α) (N : ConNF.NearLitter), ρ • ConNF.typed N = ConNF.typed (ρᵁ ↘. • N)
Instances
- data : (β : ConNF.TypeIndex) → [inst : ConNF.LtLevel β] → ConNF.ModelData β
- positions : (β : ConNF.TypeIndex) → [inst : ConNF.LtLevel β] → ConNF.Position (ConNF.Tangle β)
- typedNearLitters : (β : ConNF.Λ) → [inst : ConNF.LtLevel ↑β] → ConNF.TypedNearLitters β
Instances
theorem
ConNF.LtData.ext
{inst✝ : ConNF.Params}
{inst✝¹ : ConNF.Level}
{x y : ConNF.LtData}
(data : ConNF.LtData.data = ConNF.LtData.data)
(positions : HEq ConNF.LtData.positions ConNF.LtData.positions)
(typedNearLitters : HEq ConNF.LtData.typedNearLitters ConNF.LtData.typedNearLitters)
:
x = y
instance
ConNF.instModelDataOfLtDataOfLtLevel
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(β : ConNF.TypeIndex)
[ConNF.LtLevel β]
:
Equations
- ConNF.instModelDataOfLtDataOfLtLevel = ConNF.LtData.data
instance
ConNF.instPositionTangle_1
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(β : ConNF.TypeIndex)
[ConNF.LtLevel β]
:
Equations
- ConNF.instPositionTangle_1 = ConNF.LtData.positions
instance
ConNF.instTypedNearLitters
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(β : ConNF.Λ)
[ConNF.LtLevel ↑β]
:
Equations
- ConNF.instTypedNearLitters = ConNF.LtData.typedNearLitters
- β : ConNF.TypeIndex
- hβ : ConNF.LtLevel self.β
- s : Set (ConNF.TSet self.β)
- hs : self.s.Nonempty
Instances For
theorem
ConNF.instLtLevelβ
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
:
ConNF.LtLevel c.β
theorem
ConNF.cloud_aux
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(β : ConNF.TypeIndex)
[ConNF.LtLevel β]
(γ : ConNF.Λ)
[ConNF.LtLevel ↑γ]
(hβγ : β ≠ ↑γ)
(s : Set (ConNF.TSet β))
(hs : s.Nonempty)
:
(ConNF.typed '' {N : ConNF.NearLitter | ∃ (t : ConNF.Tangle β), t.set ∈ s ∧ Nᴸ = ConNF.fuzz hβγ t}).Nonempty
- mk: ∀ [inst : ConNF.Params] [inst_1 : ConNF.Level] [inst_2 : ConNF.LtData] (β : ConNF.TypeIndex) [inst_3 : ConNF.LtLevel β] (γ : ConNF.Λ) [inst_4 : ConNF.LtLevel ↑γ] (hβγ : β ≠ ↑γ) (s : Set (ConNF.TSet β)) (hs : s.Nonempty), ConNF.Cloud (ConNF.Code.mk β s hs) (ConNF.Code.mk (↑γ) (ConNF.typed '' {N : ConNF.NearLitter | ∃ (t : ConNF.Tangle β), t.set ∈ s ∧ Nᴸ = ConNF.fuzz hβγ t}) ⋯)
Instances For
theorem
ConNF.eq_coe_of_cloud
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c d : ConNF.Code}
(h : ConNF.Cloud c d)
:
∃ (γ : ConNF.Λ) (x : ConNF.LtLevel ↑γ) (s : Set (ConNF.TSet ↑γ)) (hs : s.Nonempty), d = ConNF.Code.mk (↑γ) s hs
theorem
ConNF.cloud_mk_iff
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
(γ : ConNF.Λ)
[ConNF.LtLevel ↑γ]
(s : Set (ConNF.TSet ↑γ))
(hs : s.Nonempty)
:
ConNF.Cloud c (ConNF.Code.mk (↑γ) s hs) ↔ ∃ (hβγ : c.β ≠ ↑γ),
s = ConNF.typed '' {N : ConNF.NearLitter | ∃ (t : ConNF.Tangle c.β), t.set ∈ c.s ∧ Nᴸ = ConNF.fuzz hβγ t}
theorem
ConNF.subset_of_cloud
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{β : ConNF.TypeIndex}
{γ : ConNF.Λ}
[ConNF.LtLevel β]
[ConNF.LtLevel ↑γ]
{hβγ : β ≠ ↑γ}
{s₁ s₂ : Set (ConNF.TSet β)}
(h :
{N : ConNF.NearLitter | ∃ (t : ConNF.Tangle β), t.set ∈ s₁ ∧ Nᴸ = ConNF.fuzz hβγ t} = {N : ConNF.NearLitter | ∃ (t : ConNF.Tangle β), t.set ∈ s₂ ∧ Nᴸ = ConNF.fuzz hβγ t})
:
s₁ ⊆ s₂
Equations
- c.positions = ⇑ConNF.pos '' {t : ConNF.Tangle c.β | t.set ∈ c.s}
Instances For
theorem
ConNF.Code.positions_nonempty
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
:
c.positions.Nonempty
theorem
ConNF.Code.positions_lt_of_cloud
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c d : ConNF.Code}
(h : ConNF.Cloud c d)
(ν₂ : ConNF.μ)
:
Equations
- c.pos = ⋯.min c.positions ⋯
Instances For
theorem
ConNF.Code.cloud_subrelation
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
:
Subrelation ConNF.Cloud (InvImage (fun (x1 x2 : ConNF.μ) => x1 < x2) ConNF.Code.pos)
theorem
ConNF.eq_of_cloud
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c : ConNF.Code}
{γ : ConNF.TypeIndex}
[ConNF.LtLevel γ]
{s t : Set (ConNF.TSet γ)}
{hs : s.Nonempty}
{ht : t.Nonempty}
(hcs : ConNF.Cloud c (ConNF.Code.mk γ s hs))
(hct : ConNF.Cloud c (ConNF.Code.mk γ t ht))
:
s = t
- mk: ∀ [inst : ConNF.Params] [inst_1 : ConNF.Level] [inst_2 : ConNF.LtData] (c : ConNF.Code), (∀ (d : ConNF.Code), ConNF.Cloud d c → d.Odd) → c.Even
Instances For
theorem
ConNF.Code.even_iff
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(a✝ : ConNF.Code)
:
a✝.Even ↔ ∀ (d : ConNF.Code), ConNF.Cloud d a✝ → d.Odd
- mk: ∀ [inst : ConNF.Params] [inst_1 : ConNF.Level] [inst_2 : ConNF.LtData] (c d : ConNF.Code), ConNF.Cloud d c → d.Even → c.Odd
Instances For
theorem
ConNF.Code.odd_iff
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(a✝ : ConNF.Code)
:
a✝.Odd ↔ ∃ (d : ConNF.Code), ConNF.Cloud d a✝ ∧ d.Even
theorem
ConNF.even_or_odd
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
:
c.Even ∨ c.Odd
@[simp]
@[simp]
- refl: ∀ [inst : ConNF.Params] [inst_1 : ConNF.Level] [inst_2 : ConNF.LtData] (c : ConNF.Code), c.Even → ConNF.Represents c c
- cloud: ∀ [inst : ConNF.Params] [inst_1 : ConNF.Level] [inst_2 : ConNF.LtData] (c d : ConNF.Code), c.Even → ConNF.Cloud c d → ConNF.Represents c d
Instances For
theorem
ConNF.Represents.even
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c d : ConNF.Code}
(h : ConNF.Represents c d)
:
c.Even
theorem
ConNF.represents_injective
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
:
ConNF.Represents.Injective
theorem
ConNF.represents_surjective
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
:
ConNF.Represents.Surjective
theorem
ConNF.represents_cofunctional
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
:
ConNF.Represents.Cofunctional
theorem
ConNF.eq_of_represents
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c : ConNF.Code}
{γ : ConNF.TypeIndex}
[ConNF.LtLevel γ]
{s t : Set (ConNF.TSet γ)}
{hs : s.Nonempty}
{ht : t.Nonempty}
(hcs : ConNF.Represents c (ConNF.Code.mk γ s hs))
(hct : ConNF.Represents c (ConNF.Code.mk γ t ht))
:
s = t
theorem
ConNF.exists_represents
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c : ConNF.Code}
(hc : c.Even)
(γ : ConNF.Λ)
[ConNF.LtLevel ↑γ]
:
∃ (s : Set (ConNF.TSet ↑γ)) (hs : s.Nonempty), ConNF.Represents c (ConNF.Code.mk (↑γ) s hs)
def
ConNF.Code.members
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
(β : ConNF.TypeIndex)
[ConNF.LtLevel β]
:
Set (ConNF.TSet β)
Equations
- c.members β = {x : ConNF.TSet β | ∃ (s : Set (ConNF.TSet β)) (hs : s.Nonempty), x ∈ s ∧ ConNF.Represents c (ConNF.Code.mk β s hs)}
Instances For
theorem
ConNF.Code.members_eq_of_represents
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c : ConNF.Code}
{β : ConNF.TypeIndex}
[ConNF.LtLevel β]
{s : Set (ConNF.TSet β)}
{hs : s.Nonempty}
(hc : ConNF.Represents c (ConNF.Code.mk β s hs))
:
c.members β = s
theorem
ConNF.Code.members_nonempty
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c : ConNF.Code}
(hc : c.Even)
(β : ConNF.Λ)
[ConNF.LtLevel ↑β]
:
(c.members ↑β).Nonempty
theorem
ConNF.Code.ext
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c d : ConNF.Code}
(hc : c.Even)
(hd : d.Even)
(β : ConNF.Λ)
[ConNF.LtLevel ↑β]
(h : c.members ↑β = d.members ↑β)
:
c = d
theorem
ConNF.Code.eq_of_isMin
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(c : ConNF.Code)
(hα : IsMin ConNF.α)
:
∃ (s : Set (ConNF.TSet ⊥)) (hs : s.Nonempty), c = ConNF.Code.mk ⊥ s hs
theorem
ConNF.Code.bot_even
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(s : Set (ConNF.TSet ⊥))
(hs : s.Nonempty)
:
(ConNF.Code.mk ⊥ s hs).Even
theorem
ConNF.Code.members_bot
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
(s : Set (ConNF.TSet ⊥))
(hs : s.Nonempty)
:
(ConNF.Code.mk ⊥ s hs).members ⊥ = s
theorem
ConNF.Code.ext'
[ConNF.Params]
[ConNF.Level]
[ConNF.LtData]
{c d : ConNF.Code}
(hc : c.Even)
(hd : d.Even)
(h : ∀ (β : ConNF.TypeIndex) [inst : ConNF.LtLevel β], c.members β = d.members β)
:
c = d