def
ConNF.constructAllPermSderiv
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
(h : ↑β < ↑α)
(ρ : ConNF.AllPerm ↑α)
:
Equations
- ConNF.constructAllPermSderiv M H h ρ = ρ.sderiv ↑β
Instances For
def
ConNF.constructAllPermBotSderiv
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(ρ : ConNF.AllPerm ↑α)
:
Equations
- ConNF.constructAllPermBotSderiv M H ρ = ρ.sderiv ⊥
Instances For
def
ConNF.constructSingleton
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
(h : ↑β < ↑α)
(x : ConNF.TSet ↑β)
:
ConNF.TSet ↑α
Equations
- ConNF.constructSingleton M H h x = some (ConNF.newSingleton x)
Instances For
theorem
ConNF.constructMotive_allPermSderiv_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
(h : ↑β < ↑α)
(ρ : ConNF.AllPerm ↑α)
:
theorem
ConNF.constructMotive_allPermBotSderiv_forget
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(ρ : ConNF.AllPerm ↑α)
:
theorem
ConNF.constructMotive_pos_atom_lt_pos
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(t : ConNF.Tangle ↑α)
(A : ↑α ↝ ⊥)
(a : ConNF.Atom)
:
theorem
ConNF.constructMotive_pos_nearLitter_lt_pos
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(t : ConNF.Tangle ↑α)
(A : ↑α ↝ ⊥)
(M✝ : ConNF.NearLitter)
:
theorem
ConNF.constructMotive_smul_fuzz
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β γ : ConNF.Λ}
(hβ : ↑β < ↑α)
(hγ : ↑γ < ↑α)
(hβγ : ↑β ≠ ↑γ)
(ρ : ConNF.AllPerm ↑α)
(t : ConNF.Tangle ↑β)
:
ConNF.PreModelData.allPermForget ρ ↘ hγ ↘. • ConNF.fuzz hβγ t = ConNF.fuzz hβγ (ConNF.constructAllPermSderiv M H hβ ρ • t)
theorem
ConNF.constructMotive_smul_fuzz_bot
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{γ : ConNF.Λ}
(hγ : ↑γ < ↑α)
(ρ : ConNF.AllPerm ↑α)
(t : ConNF.Tangle ⊥)
:
ConNF.PreModelData.allPermForget ρ ↘ hγ ↘. • ConNF.fuzz ⋯ t = ConNF.fuzz ⋯ (ConNF.constructAllPermBotSderiv M H ρ • t)
theorem
ConNF.constructMotive_allPerm_of_smul_fuzz
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(ρs : {β : ConNF.Λ} → (hβ : ↑β < ↑α) → ConNF.AllPerm ↑β)
(π : ConNF.AllPerm ⊥)
:
(∀ {β γ : ConNF.Λ} (hβ : ↑β < ↑α) (hγ : ↑γ < ↑α) (hδε : ↑β ≠ ↑γ) (t : ConNF.Tangle ↑β),
(ρs hγ)ᵁ ↘. • ConNF.fuzz hδε t = ConNF.fuzz hδε (ρs hβ • t)) →
(∀ {γ : ConNF.Λ} (hγ : ↑γ < ↑α) (t : ConNF.Tangle ⊥), (ρs hγ)ᵁ ↘. • ConNF.fuzz ⋯ t = ConNF.fuzz ⋯ (π • t)) →
∃ (ρ : ConNF.AllPerm ↑α),
(∀ (β : ConNF.Λ) (hβ : ↑β < ↑α), ConNF.constructAllPermSderiv M H hβ ρ = ρs hβ) ∧ ConNF.constructAllPermBotSderiv M H ρ = π
theorem
ConNF.constructMotive_tSet_ext
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
(β : ConNF.Λ)
(hβ : ↑β < ↑α)
(x y : ConNF.TSet ↑α)
:
theorem
ConNF.constructMotive_typedMem_singleton_iff
[ConNF.Params]
{α : ConNF.Λ}
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
{β : ConNF.Λ}
(hβ : ↑β < ↑α)
(x y : ConNF.TSet ↑β)
:
y ∈[hβ] ConNF.constructSingleton M H hβ x ↔ y = x
def
ConNF.constructHypothesis
[ConNF.Params]
(α : ConNF.Λ)
(M : (β : ConNF.Λ) → ↑β < ↑α → ConNF.Motive β)
(H : (β : ConNF.Λ) → (h : ↑β < ↑α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : ↑γ < ↑β) => M γ ⋯)
:
ConNF.Hypothesis (ConNF.constructMotive α M H) M
Equations
- One or more equations did not get rendered due to their size.