Documentation

ConNF.Model.ConstructHypothesis

New file #

In this file...

Main declarations #

def ConNF.constructAllPermSderiv [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} (h : β < α) (ρ : ConNF.AllPerm α) :
Equations
Instances For
    def ConNF.constructAllPermBotSderiv [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (ρ : ConNF.AllPerm α) :
    Equations
    Instances For
      def ConNF.constructSingleton [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} (h : β < α) (x : ConNF.TSet β) :
      Equations
      Instances For
        theorem ConNF.constructMotive_allPermSderiv_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} (h : β < α) (ρ : ConNF.AllPerm α) :
        theorem ConNF.constructMotive_allPermBotSderiv_forget [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (ρ : ConNF.AllPerm α) :
        theorem ConNF.constructMotive_pos_atom_lt_pos [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (t : ConNF.Tangle α) (A : α ) (a : ConNF.Atom) :
        a (t.support ⇘. A)ConNF.pos a < ConNF.pos t
        theorem ConNF.constructMotive_pos_nearLitter_lt_pos [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (t : ConNF.Tangle α) (A : α ) (M✝ : ConNF.NearLitter) :
        M✝ (t.support ⇘. A)ConNF.pos M✝ < ConNF.pos t
        theorem ConNF.constructMotive_smul_fuzz [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β γ : ConNF.Λ} (hβ : β < α) (hγ : γ < α) (hβγ : β γ) (ρ : ConNF.AllPerm α) (t : ConNF.Tangle β) :
        theorem ConNF.constructMotive_smul_fuzz_bot [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {γ : ConNF.Λ} (hγ : γ < α) (ρ : ConNF.AllPerm α) (t : ConNF.Tangle ) :
        theorem ConNF.constructMotive_allPerm_of_smul_fuzz [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (ρs : {β : ConNF.Λ} → ( : β < α) → ConNF.AllPerm β) (π : ConNF.AllPerm ) :
        (∀ {β γ : ConNF.Λ} ( : β < α) ( : γ < α) (hδε : β γ) (t : ConNF.Tangle β), (ρs ) ↘. ConNF.fuzz hδε t = ConNF.fuzz hδε (ρs t))(∀ {γ : ConNF.Λ} ( : γ < α) (t : ConNF.Tangle ), (ρs ) ↘. ConNF.fuzz t = ConNF.fuzz (π t))∃ (ρ : ConNF.AllPerm α), (∀ (β : ConNF.Λ) ( : β < α), ConNF.constructAllPermSderiv M H ρ = ρs ) ConNF.constructAllPermBotSderiv M H ρ = π
        theorem ConNF.constructMotive_tSet_ext [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) (β : ConNF.Λ) (hβ : β < α) (x y : ConNF.TSet α) :
        (∀ (z : ConNF.TSet β), z ∈[] x z ∈[] y)x = y
        theorem ConNF.constructMotive_typedMem_singleton_iff [ConNF.Params] {α : ConNF.Λ} (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) {β : ConNF.Λ} (hβ : β < α) (x y : ConNF.TSet β) :
        y ∈[] ConNF.constructSingleton M H x y = x
        def ConNF.constructHypothesis [ConNF.Params] (α : ConNF.Λ) (M : (β : ConNF.Λ) → β < αConNF.Motive β) (H : (β : ConNF.Λ) → (h : β < α) → ConNF.Hypothesis (M β h) fun (γ : ConNF.Λ) (h' : γ < β) => M γ ) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For