# How to use calc #

calc is an environment -- so a "mode" like tactic mode, term mode and conv mode. Documentation and basic examples for how to use it are in Theorem Proving In Lean, in section 4.

Basic example usage:

example (a b c : ) (H1 : a = b + 1) (H2 : b = c) : a = c + 1 :=
calc a = b + 1 := H1
_ = c + 1 := by rw [H2]

calc is also available in tactic mode. You can leave ?_s to create a new goal:

example (a b c : ) (H1 : a = b + 1) (H2 : b = c) : a = c + 1 := by
calc
a = b + 1 := ?_
_ = c + 1 := ?_
· exact H1
· rw [H2]

In fact, calc A = B := H ... in tactic mode functions exactly like a call to refine (calc A = B := H ...).

## Getting effective feedback while using calc #

To get helpful error messages, keep the calc structure even before the proof is complete. Use _ as in the example above or sorry to stand for missing justifications. sorry will suppress error messages entirely, while _ will generate a guiding error message.

If the structure of calc is incorrect (e.g., missing := or the justification after it), you may see error messages that are obscure and/or red squiggles that end up under a random _. To avoid these, you might first populate a skeleton proof such as:

example (A B C D :  ) : A = D :=
calc A = B := sorry
_ = C := _
_ = D := sorry

and then fill in the sorry and _ gradually.

example (A B C D :  ) : A = D := by
calc A = B := sorry
_ = C := ?_
_ = D := sorry
sorry

There is also a Calc widget that makes this easier here is a video demonstrating it.

## Using operators other than equality #

Many of the basic examples in TPIL use equality for most or all of the operators, but actually calc will work with any relation for which we have created an instance of Trans

def r :     Prop := sorry
variable (a b c: )
def r_trans {a b c} (h₁ : r a b) (h₂ : r b c) : r a c := sorry

instance : Trans r r r where
trans := r_trans

infix:50 "***" => r

example (a b c : ) (H1 : a *** b) (H2 : b *** c) : a *** c :=
calc a *** b := H1
_ *** c := H2

## Using more than one operator #

This is possible, for example:

theorem T2 (a b c d : )
(h1 : a = b) (h2 : b  c) (h3 : c + 1 < d) : a < d :=
calc
a = b     := h1
_ < b + 1 := Nat.lt_succ_self b
_  c + 1 := Nat.succ_le_succ h2
_ < d     := h3

What is actually going on here? The proofs themselves are not a mystery, for example Nat.succ_le_succ h2 is a proof of b + 1 ≤ c + 1. The clever part is that lean can put all of these together to correctly deduce that if U = V < W ≤ X < Y then U < Y. The way this is done, Kevin thinks (can someone verify this?) is that Lean continually tries to amalgamate the first two operators in the list, until there is only one left. In other words, Lean will attempt to reduce the equations thus:

U = V < W  X < Y
U < W  X < Y
U < X < Y
U < Y

Note the following subtlety: given U op1 V and V op2 W Lean has to conclude U op3 W for some operator, which might be op1 or op2 (or even, as we shall see, a new operator). How is Lean doing this? The easiest case is when one of op1 and op2 is =. Lean knows

#check trans_rel_right -- {α : Sort u} {a b c : α} (r : α → α → Prop) (h₁ : a = b) (h₂ : r b c) : r a c
#check trans_rel_left -- {α : Sort u} {a b c : α} (r : α → α → Prop) (h₁ : r a b) (h₂ : b = c) : r a c

and (Kevin believes) uses them if one of the operators is an equality operator. If however neither operator is the equality operator, Lean looks through the instances of Trans and applies these instead.

## Using user-defined operators #

It is as simple as creating the relevant Trans instances. For example

def r :     Prop := sorry
def s :     Prop := sorry
def t :     Prop := sorry

theorem rst_trans {a b c : } : r a b  s b c  t a c := sorry
infix:50 "****" => r
infix:50 "^^^^" => s
infix:50 "%%%%" => t

instance : Trans r s t  where
trans := rst_trans

example (a b c : ) (H1 : a **** b) (H2 : b ^^^^ c) : a %%%% c :=
calc a **** b := H1
_ ^^^^ c := H2

This example shows us that the third operator op3 can be different to both op1 and op2.