Documentation

Archive.Imo.Imo2024Q5

IMO 2024 Q5 #

Turbo the snail plays a game on a board with $2024$ rows and $2023$ columns. There are hidden monsters in $2022$ of the cells. Initially, Turbo does not know where any of the monsters are, but he knows that there is exactly one monster in each row except the first row and the last row, and that each column contains at most one monster.

Turbo makes a series of attempts to go from the first row to the last row. On each attempt, he chooses to start on any cell in the first row, then repeatedly moves to an adjacent cell sharing a common side. (He is allowed to return to a previously visited cell.) If he reaches a cell with a monster, his attempt ends and he is transported back to the first row to start a new attempt. The monsters do not move, and Turbo remembers whether or not each cell he has visited contains a monster. If he reaches any cell in the last row, his attempt ends and the game is over.

Determine the minimum value of $n$ for which Turbo has a strategy that guarantees reaching the last row on the $n$th attempt or earlier, regardless of the locations of the monsters.

We follow the solution from the official solutions. To show that $n$ is at least $3$, it is possible that the first cell Turbo encounters in the second row on his first attempt contains a monster, and also possible that the first cell Turbo encounters in the third row on his second attempt contains a monster. To show that $3$ attempts suffice, the first attempt can be used to locate the monster in the second row; if this is not at either side of the board, two more attempts suffice to pass behind that monster and from there go along its column to the last row, while if it is at one side of the board, the second attempt follows a zigzag path such that if it encounters a monster the third attempt can avoid all monsters.

Definitions for setting up the problem #

@[reducible, inline]
abbrev Imo2024Q5.Cell (N : ) :

A cell on the board for the game.

Equations
Instances For
    @[reducible, inline]

    A row that is neither the first nor the last (and thus contains a monster).

    Equations
    Instances For
      @[reducible, inline]

      Data for valid positions of the monsters.

      Equations
      Instances For

        The cells with monsters as a Set, given an injection from rows to columns.

        Equations
        Instances For
          def Imo2024Q5.Adjacent {N : } (x y : Cell N) :

          Whether two cells are adjacent.

          Equations
          Instances For
            structure Imo2024Q5.Path (N : ) :

            A valid path from the first to the last row.

            • cells : List (Cell N)

              The cells on the path.

            • nonempty : self.cells []
            • head_first_row : (self.cells.head ).1 = 0
            • last_last_row : (self.cells.getLast ).1 = N + 1
            • valid_move_seq : List.Chain' Adjacent self.cells
            Instances For
              noncomputable def Imo2024Q5.Path.firstMonster {N : } (p : Path N) (m : MonsterData N) :

              The first monster on a path, or none.

              Equations
              Instances For
                @[reducible, inline]

                A strategy, given the results of initial attempts, returns a path for the next attempt.

                Equations
                Instances For
                  noncomputable def Imo2024Q5.Strategy.play {N : } (s : Strategy N) (m : MonsterData N) (k : ) :
                  Fin kOption (Cell N)

                  Playing a strategy, k attempts.

                  Equations
                  • s.play m 0 = Fin.elim0
                  • s.play m k.succ = Fin.snoc (s.play m k) ((s (s.play m k)).firstMonster m)
                  Instances For
                    def Imo2024Q5.Strategy.WinsIn {N : } (s : Strategy N) (m : MonsterData N) (k : ) :

                    The predicate for a strategy winning within the given number of attempts.

                    Equations
                    Instances For

                      Whether a strategy forces a win within the given number of attempts.

                      Equations
                      Instances For

                        API definitions and lemmas about Cell #

                        def Imo2024Q5.Cell.reflect {N : } (c : Cell N) :

                        Reflecting a cell of the board (swapping left and right sides of the board).

                        Equations
                        • c.reflect = (c.1, c.2.rev)
                        Instances For

                          API definitions and lemmas about MonsterData #

                          def Imo2024Q5.row1 {N : } (hN : 2 N) :

                          The row 1, in the form required for MonsterData.

                          Equations
                          Instances For
                            theorem Imo2024Q5.coe_coe_row1 {N : } (hN : 2 N) :
                            (row1 hN) = 1
                            def Imo2024Q5.row2 {N : } (hN : 2 N) :

                            The row 2, in the form required for MonsterData.

                            Equations
                            Instances For

                              Reflecting monster data.

                              Equations
                              Instances For
                                theorem Imo2024Q5.MonsterData.reflect_reflect {N : } (m : MonsterData N) :
                                m.reflect.reflect = m
                                theorem Imo2024Q5.MonsterData.not_mem_monsterCells_of_fst_eq_zero {N : } (m : MonsterData N) {c : Cell N} (hc : c.1 = 0) :
                                cm.monsterCells
                                theorem Imo2024Q5.MonsterData.le_N_of_mem_monsterCells {N : } {m : MonsterData N} {c : Cell N} (hc : c m.monsterCells) :
                                c.1 N
                                theorem Imo2024Q5.MonsterData.mk_mem_monsterCells_iff_of_le {N : } {m : MonsterData N} {r : Fin (N + 2)} (hr1 : 1 r) (hrN : r N, ) {c : Fin (N + 1)} :
                                (r, c) m.monsterCells m r, = c
                                theorem Imo2024Q5.MonsterData.mem_monsterCells_iff_of_le {N : } {m : MonsterData N} {x : Cell N} (hr1 : 1 x.1) (hrN : x.1 N, ) :
                                x m.monsterCells m x.1, = x.2
                                theorem Imo2024Q5.MonsterData.mk_mem_monsterCells_iff {N : } {m : MonsterData N} {r : Fin (N + 2)} {c : Fin (N + 1)} :
                                (r, c) m.monsterCells ∃ (hr1 : 1 r) (hrN : r N, ), m r, = c

                                API definitions and lemmas about Adjacent #

                                theorem Imo2024Q5.Adjacent.le_of_lt {N : } {x y : Cell N} (ha : Adjacent x y) {r : Fin (N + 2)} (hr : r < y.1) :
                                r x.1

                                API definitions and lemmas about Path #

                                theorem Imo2024Q5.Path.exists_mem_fst_eq {N : } (p : Path N) (r : Fin (N + 2)) :
                                cp.cells, c.1 = r
                                theorem Imo2024Q5.Path.exists_mem_le_fst {N : } (p : Path N) (r : Fin (N + 2)) :
                                cp.cells, r c.1
                                def Imo2024Q5.Path.findFstEq {N : } (p : Path N) (r : Fin (N + 2)) :

                                The first path element on a row.

                                Equations
                                Instances For
                                  theorem Imo2024Q5.Path.find_eq_some_findFstEq {N : } (p : Path N) (r : Fin (N + 2)) :
                                  List.find? (fun (c : Cell N) => decide (c.1 = r)) p.cells = some (p.findFstEq r)
                                  theorem Imo2024Q5.Path.findFstEq_mem_cells {N : } (p : Path N) (r : Fin (N + 2)) :
                                  p.findFstEq r p.cells
                                  theorem Imo2024Q5.Path.findFstEq_fst {N : } (p : Path N) (r : Fin (N + 2)) :
                                  (p.findFstEq r).1 = r
                                  theorem Imo2024Q5.find?_eq_eq_find?_le {N : } {l : List (Cell N)} {r : Fin (N + 2)} (hne : l []) (hf : (l.head hne).1 r) (ha : List.Chain' Adjacent l) :
                                  List.find? (fun (c : Cell N) => decide (c.1 = r)) l = List.find? (fun (c : Cell N) => decide (r c.1)) l
                                  theorem Imo2024Q5.Path.findFstEq_eq_find?_le {N : } (p : Path N) (r : Fin (N + 2)) :
                                  p.findFstEq r = (List.find? (fun (c : Cell N) => decide (r c.1)) p.cells).get
                                  theorem Imo2024Q5.Path.firstMonster_isSome {N : } {p : Path N} {m : MonsterData N} :
                                  (p.firstMonster m).isSome = true xp.cells, x m.monsterCells
                                  theorem Imo2024Q5.Path.firstMonster_eq_none {N : } {p : Path N} {m : MonsterData N} :
                                  p.firstMonster m = none xp.cells, xm.monsterCells
                                  theorem Imo2024Q5.Path.one_lt_length_cells {N : } (p : Path N) :
                                  1 < p.cells.length
                                  def Imo2024Q5.Path.tail {N : } (p : Path N) :

                                  Remove the first cell from a path, if the second cell is also on the first row.

                                  Equations
                                  • p.tail = { cells := if p.cells[1].1 = 0 then p.cells.tail else p.cells, nonempty := , head_first_row := , last_last_row := , valid_move_seq := }
                                  Instances For
                                    theorem Imo2024Q5.Path.tail_induction {N : } {motive : Path NProp} (ind : ∀ (p : Path N), motive p.tailmotive p) (base : ∀ (p : Path N), p.cells[1].1 0motive p) (p : Path N) :
                                    motive p
                                    theorem Imo2024Q5.Path.tail_findFstEq {N : } (p : Path N) {r : Fin (N + 2)} (hr : r 0) :
                                    p.tail.findFstEq r = p.findFstEq r
                                    theorem Imo2024Q5.Path.tail_firstMonster {N : } (p : Path N) (m : MonsterData N) :
                                    p.tail.firstMonster m = p.firstMonster m
                                    theorem Imo2024Q5.Path.firstMonster_eq_of_findFstEq_mem {N : } {p : Path N} {m : MonsterData N} (h : p.findFstEq 1 m.monsterCells) :
                                    p.firstMonster m = some (p.findFstEq 1)
                                    theorem Imo2024Q5.Path.findFstEq_fst_sub_one_mem {N : } (p : Path N) {r : Fin (N + 2)} (hr : r 0) :
                                    (r - 1, , (p.findFstEq r).2) p.cells
                                    theorem Imo2024Q5.Path.mem_of_firstMonster_eq_some {N : } {p : Path N} {m : MonsterData N} {c : Cell N} (h : p.firstMonster m = some c) :
                                    c p.cells c m.monsterCells
                                    def Imo2024Q5.Path.ofFn {N m : } (f : Fin mCell N) (hm : m 0) (hf : (f 0, ).1 = 0) (hl : (f m - 1, ).1 = N + 1, ) (ha : ∀ (i : ) (hi : i + 1 < m), Adjacent (f i, ) (f i + 1, hi)) :

                                    Convert a function giving the cells of a path to a Path.

                                    Equations
                                    • Imo2024Q5.Path.ofFn f hm hf hl ha = { cells := List.ofFn f, nonempty := , head_first_row := , last_last_row := , valid_move_seq := }
                                    Instances For
                                      theorem Imo2024Q5.Path.ofFn_cells {N m : } (f : Fin mCell N) (hm : m 0) (hf : (f 0, ).1 = 0) (hl : (f m - 1, ).1 = N + 1, ) (ha : ∀ (i : ) (hi : i + 1 < m), Adjacent (f i, ) (f i + 1, hi)) :
                                      (ofFn f hm hf hl ha).cells = List.ofFn f
                                      theorem Imo2024Q5.Path.ofFn_firstMonster_eq_none {N m : } (f : Fin mCell N) (hm : m 0) (hf : (f 0, ).1 = 0) (hl : (f m - 1, ).1 = N + 1, ) (ha : ∀ (i : ) (hi : i + 1 < m), Adjacent (f i, ) (f i + 1, hi)) (m✝ : MonsterData N) :
                                      (ofFn f hm hf hl ha).firstMonster m✝ = none ∀ (i : Fin m), f im✝.monsterCells
                                      def Imo2024Q5.Path.reflect {N : } (p : Path N) :

                                      Reflecting a path.

                                      Equations
                                      Instances For
                                        theorem Imo2024Q5.Path.firstMonster_reflect {N : } (p : Path N) (m : MonsterData N) :
                                        p.reflect.firstMonster m.reflect = Option.map Cell.reflect (p.firstMonster m)

                                        API definitions and lemmas about Strategy #

                                        theorem Imo2024Q5.Strategy.play_comp_castLE {N : } (s : Strategy N) (m : MonsterData N) {k₁ k₂ : } (hk : k₁ k₂) :
                                        s.play m k₂ Fin.castLE hk = s.play m k₁
                                        theorem Imo2024Q5.Strategy.play_apply_of_le {N : } (s : Strategy N) (m : MonsterData N) {i k₁ k₂ : } (hi : i < k₁) (hk : k₁ k₂) :
                                        s.play m k₂ i, = s.play m k₁ i, hi
                                        theorem Imo2024Q5.Strategy.play_zero {N : } (s : Strategy N) (m : MonsterData N) {k : } (hk : 0 < k) :
                                        s.play m k 0, hk = (s Fin.elim0).firstMonster m
                                        theorem Imo2024Q5.Strategy.play_one {N : } (s : Strategy N) (m : MonsterData N) {k : } (hk : 1 < k) :
                                        s.play m k 1, hk = (s ![(s Fin.elim0).firstMonster m]).firstMonster m
                                        theorem Imo2024Q5.Strategy.play_two {N : } (s : Strategy N) (m : MonsterData N) {k : } (hk : 2 < k) :
                                        s.play m k 2, hk = (s ![(s Fin.elim0).firstMonster m, (s ![(s Fin.elim0).firstMonster m]).firstMonster m]).firstMonster m
                                        theorem Imo2024Q5.Strategy.WinsIn.mono {N : } (s : Strategy N) (m : MonsterData N) {k₁ k₂ : } (h : s.WinsIn m k₁) (hk : k₁ k₂) :
                                        s.WinsIn m k₂
                                        theorem Imo2024Q5.Strategy.ForcesWinIn.mono {N : } (s : Strategy N) {k₁ k₂ : } (h : s.ForcesWinIn k₁) (hk : k₁ k₂) :
                                        s.ForcesWinIn k₂

                                        Proof of lower bound with constructions used therein #

                                        An arbitrary choice of monster positions, which is modified to put selected monsters in desired places.

                                        Equations
                                        Instances For
                                          def Imo2024Q5.monsterData12 {N : } (hN : 2 N) (c₁ c₂ : Fin (N + 1)) :

                                          Positions for monsters with specified columns in the second and third rows (rows 1 and 2).

                                          Equations
                                          Instances For
                                            theorem Imo2024Q5.monsterData12_apply_row2 {N : } (hN : 2 N) {c₁ c₂ : Fin (N + 1)} (h : c₁ c₂) :
                                            (monsterData12 hN c₁ c₂) (row2 hN) = c₂
                                            theorem Imo2024Q5.row1_mem_monsterCells_monsterData12 {N : } (hN : 2 N) (c₁ c₂ : Fin (N + 1)) :
                                            (1, c₁) (monsterData12 hN c₁ c₂).monsterCells
                                            theorem Imo2024Q5.row2_mem_monsterCells_monsterData12 {N : } (hN : 2 N) {c₁ c₂ : Fin (N + 1)} (h : c₁ c₂) :
                                            (2, , c₂) (monsterData12 hN c₁ c₂).monsterCells
                                            theorem Imo2024Q5.Strategy.not_forcesWinIn_two {N : } (s : Strategy N) (hN : 2 N) :
                                            ¬s.ForcesWinIn 2
                                            theorem Imo2024Q5.Strategy.ForcesWinIn.three_le {N : } {s : Strategy N} {k : } (hf : s.ForcesWinIn k) (hN : 2 N) :
                                            3 k

                                            Proof of upper bound and constructions used therein #

                                            def Imo2024Q5.fn0 (N : ) :
                                            Fin (2 * N + 2)Cell N

                                            The first attempt in a winning strategy, as a function: first pass along the second row to locate the monster there.

                                            Equations
                                            • Imo2024Q5.fn0 N i = if i = 0 then (0, 0) else if h : i < N + 2 then (1, i - 1, ) else (i - N, , N, )
                                            Instances For
                                              def Imo2024Q5.path0 {N : } (hN : 2 N) :

                                              The first attempt in a winning strategy, as a Path.

                                              Equations
                                              Instances For
                                                def Imo2024Q5.fn1OfNotEdge {N : } {c₁ : Fin (N + 1)} (hc₁ : c₁ 0) :
                                                Fin (N + 3)Cell N

                                                The second attempt in a winning strategy, as a function, if the monster in the second row is not at an edge: pass to the left of that monster then along its column.

                                                Equations
                                                Instances For
                                                  def Imo2024Q5.path1OfNotEdge {N : } {c₁ : Fin (N + 1)} (hc₁ : c₁ 0) :

                                                  The second attempt in a winning strategy, as a function, if the monster in the second row is not at an edge.

                                                  Equations
                                                  Instances For
                                                    def Imo2024Q5.fn2OfNotEdge {N : } {c₁ : Fin (N + 1)} (hc₁ : c₁ N) :
                                                    Fin (N + 3)Cell N

                                                    The third attempt in a winning strategy, as a function, if the monster in the second row is not at an edge: pass to the right of that monster then along its column.

                                                    Equations
                                                    Instances For
                                                      def Imo2024Q5.path2OfNotEdge {N : } {c₁ : Fin (N + 1)} (hc₁ : c₁ N) :

                                                      The third attempt in a winning strategy, as a function, if the monster in the second row is not at an edge.

                                                      Equations
                                                      Instances For
                                                        def Imo2024Q5.fn1OfEdge0 (N : ) :
                                                        Fin (2 * N + 1)Cell N

                                                        The second attempt in a winning strategy, as a function, if the monster in the second row is at the left edge: zigzag across the board so that, if we encounter a monster, we have a third path we know will not encounter a monster.

                                                        Equations
                                                        • Imo2024Q5.fn1OfEdge0 N i = if h : i = 2 * N then (N + 1, , N, ) else ((i + 1) / 2, , i / 2 + 1, )
                                                        Instances For
                                                          def Imo2024Q5.path1OfEdge0 {N : } (hN : 2 N) :

                                                          The second attempt in a winning strategy, as a Path, if the monster in the second row is at the left edge.

                                                          Equations
                                                          Instances For
                                                            def Imo2024Q5.path1OfEdgeN {N : } (hN : 2 N) :

                                                            The second attempt in a winning strategy, as a Path, if the monster in the second row is at the right edge.

                                                            Equations
                                                            Instances For
                                                              def Imo2024Q5.fn2OfEdge0 {N : } {r : Fin (N + 2)} (hr : r N) :
                                                              Fin (N + 2 * r - 1)Cell N

                                                              The third attempt in a winning strategy, as a function, if the monster in the second row is at the left edge and the second (zigzag) attempt encountered a monster: on the row before the monster was encountered, move to the following row one place earlier, proceed to the left edge and then along that column.

                                                              Equations
                                                              • Imo2024Q5.fn2OfEdge0 hr i = if h₁ : i + 2 < 2 * r then ((i + 1) / 2, , i / 2 + 1, ) else if h₂ : i + 2 < 3 * r then (r, 3 * r - 3 - i, ) else (i + 3 - 2 * r, , 0)
                                                              Instances For
                                                                theorem Imo2024Q5.fn2OfEdge0_apply_eq_fn1OfEdge0_apply_of_lt {N : } {r : Fin (N + 2)} (hr : r N) {i : } (h : i + 2 < 2 * r) :
                                                                fn2OfEdge0 hr i, = fn1OfEdge0 N i,
                                                                def Imo2024Q5.path2OfEdge0 {N : } (hN : 2 N) {r : Fin (N + 2)} (hr2 : 2 r) (hrN : r N) :

                                                                The third attempt in a winning strategy, as a Path, if the monster in the second row is at the left edge and the second (zigzag) attempt encountered a monster.

                                                                Equations
                                                                Instances For
                                                                  def Imo2024Q5.path2OfEdge0Def {N : } (hN : 2 N) (r : Fin (N + 2)) :

                                                                  The third attempt in a winning strategy, as a Path, if the monster in the second row is at the left edge and the second (zigzag) attempt encountered a monster, version that works with junk values of r for convenience in defining the strategy before needing to prove things about exactly where it can encounter monsters.

                                                                  Equations
                                                                  Instances For
                                                                    def Imo2024Q5.path2OfEdgeNDef {N : } (hN : 2 N) (r : Fin (N + 2)) :

                                                                    The third attempt in a winning strategy, as a Path, if the monster in the second row is at the right edge and the second (zigzag) attempt encountered a monster.

                                                                    Equations
                                                                    Instances For
                                                                      def Imo2024Q5.path1 {N : } (hN : 2 N) (c₁ : Fin (N + 1)) :

                                                                      The second attempt in a winning strategy, given the column of the monster in the second row, as a Path.

                                                                      Equations
                                                                      Instances For
                                                                        def Imo2024Q5.path2 {N : } (hN : 2 N) (c₁ : Fin (N + 1)) (r : Fin (N + 2)) :

                                                                        The third attempt in a winning strategy, given the column of the monster in the second row and the row of the monster (if any) found in the second attempt, as a Path.

                                                                        Equations
                                                                        Instances For
                                                                          def Imo2024Q5.winningStrategy {N : } (hN : 2 N) :

                                                                          A strategy that wins in three attempts.

                                                                          Equations
                                                                          Instances For
                                                                            theorem Imo2024Q5.path0_firstMonster_eq_apply_row1 {N : } (hN : 2 N) (m : MonsterData N) :
                                                                            (path0 hN).firstMonster m = some (1, m (row1 hN))
                                                                            theorem Imo2024Q5.winningStrategy_play_one {N : } (hN : 2 N) (m : MonsterData N) :
                                                                            (winningStrategy hN).play m 3 1, = (path1 hN (m (row1 hN))).firstMonster m
                                                                            theorem Imo2024Q5.winningStrategy_play_two {N : } (hN : 2 N) (m : MonsterData N) :
                                                                            (winningStrategy hN).play m 3 2, = (path2 hN (m (row1 hN)) (((path1 hN (m (row1 hN))).firstMonster m).getD 0).1).firstMonster m
                                                                            theorem Imo2024Q5.path1_firstMonster_of_not_edge {N : } (hN : 2 N) {m : MonsterData N} (hc₁0 : m (row1 hN) 0) (hc₁N : (m (row1 hN)) N) :
                                                                            (path1 hN (m (row1 hN))).firstMonster m = none (path1 hN (m (row1 hN))).firstMonster m = some (2, , (m (row1 hN)) - 1, )
                                                                            theorem Imo2024Q5.path2_firstMonster_of_not_edge {N : } (hN : 2 N) {m : MonsterData N} (hc₁0 : m (row1 hN) 0) (hc₁N : (m (row1 hN)) N) (r : Fin (N + 2)) :
                                                                            (path2 hN (m (row1 hN)) r).firstMonster m = none (path2 hN (m (row1 hN)) r).firstMonster m = some (2, , (m (row1 hN)) + 1, )
                                                                            theorem Imo2024Q5.winningStrategy_play_one_eq_none_or_play_two_eq_none_of_not_edge {N : } (hN : 2 N) {m : MonsterData N} (hc₁0 : m (row1 hN) 0) (hc₁N : (m (row1 hN)) N) :
                                                                            (winningStrategy hN).play m 3 1, = none (winningStrategy hN).play m 3 2, = none
                                                                            theorem Imo2024Q5.path2OfEdge0_firstMonster_eq_none_of_path1OfEdge0_firstMonster_eq_some {N : } (hN : 2 N) {x : Cell N} (hx2 : 2 x.1) (hxN : x.1 N) {m : MonsterData N} (hc₁0 : m (row1 hN) = 0) (hx : (path1OfEdge0 hN).firstMonster m = some x) :
                                                                            (path2OfEdge0 hN hx2 hxN).firstMonster m = none
                                                                            theorem Imo2024Q5.winningStrategy_play_one_eq_none_or_play_two_eq_none_of_edge_zero {N : } (hN : 2 N) {m : MonsterData N} (hc₁0 : m (row1 hN) = 0) :
                                                                            (winningStrategy hN).play m 3 1, = none (winningStrategy hN).play m 3 2, = none
                                                                            theorem Imo2024Q5.winningStrategy_play_one_of_edge_N {N : } (hN : 2 N) {m : MonsterData N} (hc₁N : (m (row1 hN)) = N) :
                                                                            (winningStrategy hN).play m 3 1, = Option.map Cell.reflect ((winningStrategy hN).play m.reflect 3 1, )
                                                                            theorem Imo2024Q5.winningStrategy_play_two_of_edge_N {N : } (hN : 2 N) {m : MonsterData N} (hc₁N : (m (row1 hN)) = N) :
                                                                            (winningStrategy hN).play m 3 2, = Option.map Cell.reflect ((winningStrategy hN).play m.reflect 3 2, )
                                                                            theorem Imo2024Q5.winningStrategy_play_one_eq_none_or_play_two_eq_none_of_edge_N {N : } (hN : 2 N) {m : MonsterData N} (hc₁N : (m (row1 hN)) = N) :
                                                                            (winningStrategy hN).play m 3 1, = none (winningStrategy hN).play m 3 2, = none
                                                                            theorem Imo2024Q5.winningStrategy_play_one_eq_none_or_play_two_eq_none {N : } (hN : 2 N) (m : MonsterData N) :
                                                                            (winningStrategy hN).play m 3 1, = none (winningStrategy hN).play m 3 2, = none
                                                                            theorem Imo2024Q5.winningStrategy_forcesWinIn_three {N : } (hN : 2 N) :
                                                                            (winningStrategy hN).ForcesWinIn 3

                                                                            This is to be determined by the solver of the original problem (and much of the difficulty for contestants is in finding this answer rather than spending time attempting to prove a conjectured answer around log₂ 2023).

                                                                            Equations
                                                                            Instances For
                                                                              theorem Imo2024Q5.result :
                                                                              IsLeast {k : | ∃ (s : Strategy 2022), s.ForcesWinIn k} answer

                                                                              The final result, combining upper and lower bounds.