Documentation

Mathlib.Algebra.Algebra.Subalgebra.Tower

Subalgebras in towers of algebras #

In this file we prove facts about subalgebras in towers of algebra.

An algebra tower A/S/R is expressed by having instances of Algebra A S, Algebra R S, Algebra R A and IsScalarTower R S A, the later asserting the compatibility condition (r • s) • a = r • (s • a).

Main results #

theorem Algebra.lmul_algebraMap (R : Type u) {A : Type w} [CommSemiring R] [Semiring A] [Algebra R A] (x : R) :
(Algebra.lmul R A) ((algebraMap R A) x) = (Algebra.lsmul R R A) x
instance IsScalarTower.subalgebra (R : Type u) (S : Type v) (A : Type w) [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] (S₀ : Subalgebra R S) :
IsScalarTower (S₀) S A
Equations
  • =
instance IsScalarTower.subalgebra' (R : Type u) (S : Type v) (A : Type w) [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (S₀ : Subalgebra R S) :
IsScalarTower R (S₀) A
Equations
  • =
def Subalgebra.restrictScalars (R : Type u) {S : Type v} {A : Type w} [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (U : Subalgebra S A) :

Given a tower A / ↥U / S / R of algebras, where U is an S-subalgebra of A, reinterpret U as an R-subalgebra of A.

Equations
Instances For
    @[simp]
    theorem Subalgebra.coe_restrictScalars (R : Type u) {S : Type v} {A : Type w} [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] {U : Subalgebra S A} :
    @[simp]
    theorem Subalgebra.restrictScalars_toSubmodule (R : Type u) {S : Type v} {A : Type w} [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] {U : Subalgebra S A} :
    Subalgebra.toSubmodule (Subalgebra.restrictScalars R U) = Submodule.restrictScalars R (Subalgebra.toSubmodule U)
    @[simp]
    theorem Subalgebra.mem_restrictScalars (R : Type u) {S : Type v} {A : Type w} [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] {U : Subalgebra S A} {x : A} :
    def Subalgebra.ofRestrictScalars (R : Type u) {S : Type v} {A : Type w} {B : Type u₁} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra R A] [Algebra S B] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] (U : Subalgebra S A) (f : U →ₐ[S] B) :

    Produces an R-algebra map from U.restrictScalars R given an S-algebra map from U.

    This is a special case of AlgHom.restrictScalars that can be helpful in elaboration.

    Equations
    Instances For
      @[simp]
      theorem Subalgebra.range_isScalarTower_toAlgHom (R : Type u) (A : Type w) [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) :
      LinearMap.range (IsScalarTower.toAlgHom R (S) A) = Subalgebra.toSubmodule S