Documentation

Mathlib.Algebra.Category.CommBialgCat

The category of commutative bialgebras over a commutative ring #

This file defines the bundled category CommBialgCat R of commutative bialgebras over a fixed commutative ring R along with the forgetful functor to CommAlgCat.

structure CommBialgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of commutative R-bialgebras and their morphisms.

Instances For
    @[reducible, inline]
    abbrev CommBialgCat.of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Bialgebra R X] :

    Turn an unbundled R-bialgebra into the corresponding object in the category of R-bialgebras.

    This is the preferred way to construct a term of CommBialgCat R.

    Equations
    Instances For
      theorem CommBialgCat.coe_of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Bialgebra R X] :
      (of R X) = X
      structure CommBialgCat.Hom {R : Type u} [CommRing R] (A B : CommBialgCat R) :

      The type of morphisms in CommBialgCat R.

      • hom' : A →ₐc[R] B

        The underlying bialgebra map.

      Instances For
        theorem CommBialgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {A B : CommBialgCat R} {x y : A.Hom B} :
        x = y x.hom' = y.hom'
        theorem CommBialgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {A B : CommBialgCat R} {x y : A.Hom B} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev CommBialgCat.Hom.hom {R : Type u} [CommRing R] {A B : CommBialgCat R} (f : A.Hom B) :
        A →ₐc[R] B

        Turn a morphism in CommBialgCat back into a BialgHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev CommBialgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (f : X →ₐc[R] Y) :
          of R X of R Y

          Typecheck a BialgHom as a morphism in CommBialgCat R.

          Equations
          Instances For
            def CommBialgCat.Hom.Simps.hom {R : Type u} [CommRing R] (A B : CommBialgCat R) (f : A.Hom B) :
            A →ₐc[R] B

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              @[simp]
              theorem CommBialgCat.hom_comp {R : Type u} [CommRing R] {A B C : CommBialgCat R} (f : A B) (g : B C) :
              theorem CommBialgCat.hom_ext {R : Type u} [CommRing R] {A B : CommBialgCat R} {f g : A B} (hf : Hom.hom f = Hom.hom g) :
              f = g
              theorem CommBialgCat.hom_ext_iff {R : Type u} [CommRing R] {A B : CommBialgCat R} {f g : A B} :
              @[simp]
              theorem CommBialgCat.hom_ofHom {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Bialgebra R X] [CommRing Y] [Bialgebra R Y] (f : X →ₐc[R] Y) :
              @[simp]
              theorem CommBialgCat.ofHom_hom {R : Type u} [CommRing R] {A B : CommBialgCat R} (f : A B) :
              @[simp]
              theorem CommBialgCat.ofHom_comp {R : Type u} [CommRing R] {X Y Z : Type v} [CommRing X] [Bialgebra R X] [CommRing Y] [Bialgebra R Y] [CommRing Z] [Bialgebra R Z] (f : X →ₐc[R] Y) (g : Y →ₐc[R] Z) :
              theorem CommBialgCat.ofHom_apply {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Bialgebra R X] [CommRing Y] [Bialgebra R Y] (f : X →ₐc[R] Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              def CommBialgCat.ofSelfIso {R : Type u} [CommRing R] (M : CommBialgCat R) :
              of R M M

              Forgetting to the underlying type and then building the bundled object returns the original bialgebra.

              Equations
              Instances For
                def CommBialgCat.isoMk {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                of R X of R Y

                Build an isomorphism in the category CommBialgCat R from a BialgEquiv between Bialgebras.

                Equations
                Instances For
                  @[simp]
                  theorem CommBialgCat.isoMk_inv {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                  (isoMk e).inv = ofHom e.symm
                  @[simp]
                  theorem CommBialgCat.isoMk_hom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                  (isoMk e).hom = ofHom e
                  def CommBialgCat.bialgEquivOfIso {R : Type u} [CommRing R] {A B : CommBialgCat R} (i : A B) :
                  A ≃ₐc[R] B

                  Build a BialgEquiv from an isomorphism in the category CommBialgCat R.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def CommBialgCat.isoEquivBialgEquiv {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Bialgebra R X] [CommRing Y] [Bialgebra R Y] :
                    (of R X of R Y) X ≃ₐc[R] Y

                    Bialgebra equivalences between Bialgebras are the same as isomorphisms in CommBialgCat.

                    Equations
                    Instances For
                      @[simp]
                      instance CommAlgCat.mon_ClassOpOf {R : Type u} [CommRing R] {A : Type u} [CommRing A] [Bialgebra R A] :
                      Equations

                      Commutative bialgebras over a commutative ring R are the same thing as comonoid R-algebras.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For