Documentation

Mathlib.Algebra.DirectSum.Internal

Internally graded rings and algebras #

This module provides DirectSum.GSemiring and DirectSum.GCommSemiring instances for a collection of subobjects A when a SetLike.GradedMonoid instance is available:

With these instances in place, it provides the bundled canonical maps out of a direct sum of subobjects into their carrier type:

Strictly the definitions in this file are not sufficient to fully define an "internal" direct sum; to represent this case, (h : DirectSum.IsInternal A) [SetLike.GradedMonoid A] is needed. In the future there will likely be a data-carrying, constructive, typeclass version of DirectSum.IsInternal for providing an explicit decomposition function.

When iSupIndep (Set.range A) (a weaker condition than DirectSum.IsInternal A), these provide a grading of ⨆ i, A i, and the mapping ⨁ i, A i →+ ⨆ i, A i can be obtained as DirectSum.toAddMonoid (fun i ↦ AddSubmonoid.inclusion <| le_iSup A i).

This file also provides some extra structure on A 0, namely:

Tags #

internally graded ring

theorem SetLike.algebraMap_mem_graded {ι : Type u_1} {S : Type u_3} {R : Type u_4} [Zero ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [GradedOne A] (s : S) :
(algebraMap S R) s A 0
theorem SetLike.natCast_mem_graded {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Zero ι] [AddMonoidWithOne R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedOne A] (n : ) :
n A 0
@[deprecated SetLike.natCast_mem_graded (since := "2024-04-17")]
theorem SetLike.nat_cast_mem_graded {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Zero ι] [AddMonoidWithOne R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedOne A] (n : ) :
n A 0

Alias of SetLike.natCast_mem_graded.

theorem SetLike.intCast_mem_graded {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Zero ι] [AddGroupWithOne R] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedOne A] (z : ) :
z A 0
@[deprecated SetLike.intCast_mem_graded (since := "2024-04-17")]
theorem SetLike.int_cast_mem_graded {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Zero ι] [AddGroupWithOne R] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedOne A] (z : ) :
z A 0

Alias of SetLike.intCast_mem_graded.

From AddSubmonoids and AddSubgroups #

instance SetLike.gnonUnitalNonAssocSemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Add ι] [NonUnitalNonAssocSemiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMul A] :
DirectSum.GNonUnitalNonAssocSemiring fun (i : ι) => (A i)

Build a DirectSum.GNonUnitalNonAssocSemiring instance for a collection of additive submonoids.

Equations
instance SetLike.gsemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [AddMonoid ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] :
DirectSum.GSemiring fun (i : ι) => (A i)

Build a DirectSum.GSemiring instance for a collection of additive submonoids.

Equations
instance SetLike.gcommSemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [AddCommMonoid ι] [CommSemiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] :
DirectSum.GCommSemiring fun (i : ι) => (A i)

Build a DirectSum.GCommSemiring instance for a collection of additive submonoids.

Equations
instance SetLike.gring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [AddMonoid ι] [Ring R] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] :
DirectSum.GRing fun (i : ι) => (A i)

Build a DirectSum.GRing instance for a collection of additive subgroups.

Equations
instance SetLike.gcommRing {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [AddCommMonoid ι] [CommRing R] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] :
DirectSum.GCommRing fun (i : ι) => (A i)

Build a DirectSum.GCommRing instance for a collection of additive submonoids.

Equations
def DirectSum.coeRingHom {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] :
(DirectSum ι fun (i : ι) => (A i)) →+* R

The canonical ring isomorphism between ⨁ i, A i and R

Equations
Instances For
    @[simp]
    theorem DirectSum.coeRingHom_of {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] (i : ι) (x : (A i)) :
    (coeRingHom A) ((of (fun (i : ι) => (A i)) i) x) = x

    The canonical ring isomorphism between ⨁ i, A i and R

    theorem DirectSum.coe_mul_apply {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] [(i : ι) → (x : (A i)) → Decidable (x 0)] (r r' : DirectSum ι fun (i : ι) => (A i)) (n : ι) :
    ((r * r') n) = ijFinset.filter (fun (ij : ι × ι) => ij.1 + ij.2 = n) (DFinsupp.support r ×ˢ DFinsupp.support r'), (r ij.1) * (r' ij.2)
    theorem DirectSum.coe_mul_apply_eq_dfinsupp_sum {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] [(i : ι) → (x : (A i)) → Decidable (x 0)] (r r' : DirectSum ι fun (i : ι) => (A i)) (n : ι) :
    ((r * r') n) = DFinsupp.sum r fun (i : ι) (ri : (A i)) => DFinsupp.sum r' fun (j : ι) (rj : (A j)) => if i + j = n then ri * rj else 0
    theorem DirectSum.coe_of_mul_apply_aux {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] {i : ι} (r : (A i)) (r' : DirectSum ι fun (i : ι) => (A i)) {j n : ι} (H : ∀ (x : ι), i + x = n x = j) :
    (((of (fun (i : ι) => (A i)) i) r * r') n) = r * (r' j)
    theorem DirectSum.coe_mul_of_apply_aux {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddMonoid ι] [SetLike.GradedMonoid A] (r : DirectSum ι fun (i : ι) => (A i)) {i : ι} (r' : (A i)) {j n : ι} (H : ∀ (x : ι), x + i = n x = j) :
    ((r * (of (fun (i : ι) => (A i)) i) r') n) = (r j) * r'
    theorem DirectSum.coe_of_mul_apply_add {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddLeftCancelMonoid ι] [SetLike.GradedMonoid A] {i : ι} (r : (A i)) (r' : DirectSum ι fun (i : ι) => (A i)) (j : ι) :
    (((of (fun (i : ι) => (A i)) i) r * r') (i + j)) = r * (r' j)
    theorem DirectSum.coe_mul_of_apply_add {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddRightCancelMonoid ι] [SetLike.GradedMonoid A] (r : DirectSum ι fun (i : ι) => (A i)) {i : ι} (r' : (A i)) (j : ι) :
    ((r * (of (fun (i : ι) => (A i)) i) r') (j + i)) = (r j) * r'
    theorem DirectSum.coe_of_mul_apply_of_not_le {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] {i : ι} (r : (A i)) (r' : DirectSum ι fun (i : ι) => (A i)) (n : ι) (h : ¬i n) :
    (((of (fun (i : ι) => (A i)) i) r * r') n) = 0
    theorem DirectSum.coe_mul_of_apply_of_not_le {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] (r : DirectSum ι fun (i : ι) => (A i)) {i : ι} (r' : (A i)) (n : ι) (h : ¬i n) :
    ((r * (of (fun (i : ι) => (A i)) i) r') n) = 0
    theorem DirectSum.coe_mul_of_apply_of_le {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] [Sub ι] [OrderedSub ι] [AddLeftReflectLE ι] (r : DirectSum ι fun (i : ι) => (A i)) {i : ι} (r' : (A i)) (n : ι) (h : i n) :
    ((r * (of (fun (i : ι) => (A i)) i) r') n) = (r (n - i)) * r'
    theorem DirectSum.coe_of_mul_apply_of_le {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] [Sub ι] [OrderedSub ι] [AddLeftReflectLE ι] {i : ι} (r : (A i)) (r' : DirectSum ι fun (i : ι) => (A i)) (n : ι) (h : i n) :
    (((of (fun (i : ι) => (A i)) i) r * r') n) = r * (r' (n - i))
    theorem DirectSum.coe_mul_of_apply {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] [Sub ι] [OrderedSub ι] [AddLeftReflectLE ι] (r : DirectSum ι fun (i : ι) => (A i)) {i : ι} (r' : (A i)) (n : ι) [Decidable (i n)] :
    ((r * (of (fun (i : ι) => (A i)) i) r') n) = if i n then (r (n - i)) * r' else 0
    theorem DirectSum.coe_of_mul_apply {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [DecidableEq ι] [Semiring R] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [AddCommMonoid ι] [PartialOrder ι] [CanonicallyOrderedAdd ι] [SetLike.GradedMonoid A] [Sub ι] [OrderedSub ι] [AddLeftReflectLE ι] {i : ι} (r : (A i)) (r' : DirectSum ι fun (i : ι) => (A i)) (n : ι) [Decidable (i n)] :
    (((of (fun (i : ι) => (A i)) i) r * r') n) = if i n then r * (r' (n - i)) else 0

    From Submodules #

    instance Submodule.galgebra {ι : Type u_1} {S : Type u_3} {R : Type u_4} [AddMonoid ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [SetLike.GradedMonoid A] :
    DirectSum.GAlgebra S fun (i : ι) => (A i)

    Build a DirectSum.GAlgebra instance for a collection of Submodules.

    Equations
    @[simp]
    theorem Submodule.setLike.coe_galgebra_toFun {S : Type u_3} {R : Type u_4} {ι : Type u_5} [AddMonoid ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [SetLike.GradedMonoid A] (s : S) :
    (DirectSum.GAlgebra.toFun s) = (algebraMap S R) s
    instance Submodule.nat_power_gradedMonoid {S : Type u_3} {R : Type u_4} [CommSemiring S] [Semiring R] [Algebra S R] (p : Submodule S R) :
    SetLike.GradedMonoid fun (i : ) => p ^ i

    A direct sum of powers of a submodule of an algebra has a multiplicative structure.

    def DirectSum.coeAlgHom {ι : Type u_1} {S : Type u_3} {R : Type u_4} [DecidableEq ι] [AddMonoid ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [SetLike.GradedMonoid A] :
    (DirectSum ι fun (i : ι) => (A i)) →ₐ[S] R

    The canonical algebra isomorphism between ⨁ i, A i and R.

    Equations
    Instances For
      theorem Submodule.iSup_eq_toSubmodule_range {ι : Type u_1} {S : Type u_3} {R : Type u_4} [DecidableEq ι] [AddMonoid ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [SetLike.GradedMonoid A] :
      ⨆ (i : ι), A i = Subalgebra.toSubmodule (DirectSum.coeAlgHom A).range

      The supremum of submodules that form a graded monoid is a subalgebra, and equal to the range of DirectSum.coeAlgHom.

      @[simp]
      theorem DirectSum.coeAlgHom_of {ι : Type u_1} {S : Type u_3} {R : Type u_4} [DecidableEq ι] [AddMonoid ι] [CommSemiring S] [Semiring R] [Algebra S R] (A : ιSubmodule S R) [SetLike.GradedMonoid A] (i : ι) (x : (A i)) :
      (coeAlgHom A) ((of (fun (i : ι) => (A i)) i) x) = x

      Facts about grade zero #

      def SetLike.GradeZero.subsemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Semiring R] [AddMonoid ι] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] :

      The subsemiring A 0 of R.

      Equations
      Instances For
        instance SetLike.GradeZero.instSemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Semiring R] [AddMonoid ι] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] :
        Semiring (A 0)

        The semiring A 0 inherited from R in the presence of SetLike.GradedMonoid A.

        Equations
        @[simp]
        theorem SetLike.GradeZero.coe_natCast {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Semiring R] [AddMonoid ι] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] (n : ) :
        n = n
        @[simp]
        theorem SetLike.GradeZero.coe_ofNat {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Semiring R] [AddMonoid ι] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] (n : ) [n.AtLeastTwo] :
        instance SetLike.GradeZero.instCommSemiring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [CommSemiring R] [AddCommMonoid ι] [SetLike σ R] [AddSubmonoidClass σ R] (A : ισ) [GradedMonoid A] :
        CommSemiring (A 0)

        The commutative semiring A 0 inherited from R in the presence of SetLike.GradedMonoid A.

        Equations
        def SetLike.GradeZero.subring {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Ring R] [AddMonoid ι] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] :

        The subring A 0 of R.

        Equations
        • SetLike.GradeZero.subring A = { carrier := (A 0), mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
        Instances For
          instance SetLike.GradeZero.instRing {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Ring R] [AddMonoid ι] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] :
          Ring (A 0)

          The ring A 0 inherited from R in the presence of SetLike.GradedMonoid A.

          Equations
          theorem SetLike.GradeZero.coe_intCast {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [Ring R] [AddMonoid ι] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] (z : ) :
          z = z
          instance SetLike.GradeZero.instCommRing {ι : Type u_1} {σ : Type u_2} {R : Type u_4} [CommRing R] [AddCommMonoid ι] [SetLike σ R] [AddSubgroupClass σ R] (A : ισ) [GradedMonoid A] :
          CommRing (A 0)

          The commutative ring A 0 inherited from R in the presence of SetLike.GradedMonoid A.

          Equations
          def SetLike.GradeZero.subalgebra {ι : Type u_1} {S : Type u_3} {R : Type u_4} [CommSemiring S] [Semiring R] [Algebra S R] [AddMonoid ι] (A : ιSubmodule S R) [GradedMonoid A] :

          The subalgebra A 0 of R.

          Equations
          • SetLike.GradeZero.subalgebra A = { carrier := (A 0), mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := }
          Instances For
            instance SetLike.GradeZero.instAlgebra {ι : Type u_1} {S : Type u_3} {R : Type u_4} [CommSemiring S] [Semiring R] [Algebra S R] [AddMonoid ι] (A : ιSubmodule S R) [GradedMonoid A] :
            Algebra S (A 0)

            The S-algebra A 0 inherited from R in the presence of SetLike.GradedMonoid A.

            Equations
            @[simp]
            theorem SetLike.GradeZero.coe_algebraMap {ι : Type u_1} {S : Type u_3} {R : Type u_4} [CommSemiring S] [Semiring R] [Algebra S R] [AddMonoid ι] (A : ιSubmodule S R) [GradedMonoid A] (s : S) :
            ((algebraMap S (A 0)) s) = (algebraMap S R) s
            theorem SetLike.homogeneous_zero_submodule {ι : Type u_1} {S : Type u_3} {R : Type u_4} [Zero ι] [Semiring S] [AddCommMonoid R] [Module S R] (A : ιSubmodule S R) :
            theorem SetLike.Homogeneous.smul {ι : Type u_1} {S : Type u_3} {R : Type u_4} [CommSemiring S] [Semiring R] [Algebra S R] {A : ιSubmodule S R} {s : S} {r : R} (hr : Homogeneous A r) :