Documentation

Mathlib.Algebra.Group.Irreducible.Indecomposable

Indecomposable elements of monoids #

def IsMulIndecomposable {ι : Type u_1} {M : Type u_2} [Monoid M] (v : ιM) (s : Set ι) (i : ι) :

Given a family of elements of a monoid, a member is said to be indecomposable if it cannot be written as a product of two others in a non-trivial way.

Equations
Instances For
    def IsAddIndecomposable {ι : Type u_1} {M : Type u_2} [AddMonoid M] (v : ιM) (s : Set ι) (i : ι) :

    Given a family of elements of an additive monoid, a member is said to be indecomposable if it cannot be written as a sum of two others in a non-trivial way.

    Equations
    Instances For
      theorem IsMulIndecomposable.subset {ι : Type u_1} {M : Type u_2} [Monoid M] (v : ιM) (s : Set ι) :
      theorem IsAddIndecomposable.subset {ι : Type u_1} {M : Type u_2} [AddMonoid M] (v : ιM) (s : Set ι) :
      def IsMulIndecomposable.baseOf {ι : Type u_1} {M : Type u_2} {S : Type u_4} [Monoid M] [LinearOrder S] [Monoid S] (v : ιM) (f : M →* S) :
      Set ι

      The "base" of a set of points of a monoid relative to a morphism f.

      Equations
      Instances For
        def IsAddIndecomposable.baseOf {ι : Type u_1} {M : Type u_2} {S : Type u_4} [AddMonoid M] [LinearOrder S] [AddMonoid S] (v : ιM) (f : M →+ S) :
        Set ι

        The "base" of v relative to a morphism f.

        In the case that v is the set of roots of a crystallographic root system, and S = ℚ, this is the base of the root system associated to f.

        Equations
        Instances For
          theorem IsMulIndecomposable.baseOf_subset_one_lt {ι : Type u_1} {M : Type u_2} {S : Type u_4} [Monoid M] [LinearOrder S] [Monoid S] (v : ιM) (f : M →* S) :
          baseOf v f {i : ι | 1 < f (v i)}
          theorem IsAddIndecomposable.baseOf_subset_pos {ι : Type u_1} {M : Type u_2} {S : Type u_4} [AddMonoid M] [LinearOrder S] [AddMonoid S] (v : ιM) (f : M →+ S) :
          baseOf v f {i : ι | 0 < f (v i)}
          theorem IsMulIndecomposable.image_baseOf_inv_comp_eq {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) :
          theorem IsAddIndecomposable.image_baseOf_neg_comp_eq {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) :
          theorem Submonoid.closure_image_isMulIndecomposable_baseOf {ι : Type u_1} {M : Type u_2} {S : Type u_4} [Monoid M] [LinearOrder S] [Finite ι] [CommMonoid S] [IsOrderedCancelMonoid S] (v : ιM) (f : M →* S) :
          closure (v '' IsMulIndecomposable.baseOf v f) = closure (v '' {i : ι | 1 < f (v i)})

          Given a finite family of points v in a monoid M, together with a morphism into a linearly-ordered monoid f : M →* S, the submonoid generated by those points of v which lie in the "half space" where f > 1 is generated by the subset of such points which are indecomposable with respect to points in this half space.

          theorem AddSubmonoid.closure_image_isAddIndecomposable_baseOf {ι : Type u_1} {M : Type u_2} {S : Type u_4} [AddMonoid M] [LinearOrder S] [Finite ι] [AddCommMonoid S] [IsOrderedCancelAddMonoid S] (v : ιM) (f : M →+ S) :
          closure (v '' IsAddIndecomposable.baseOf v f) = closure (v '' {i : ι | 0 < f (v i)})

          Given a finite family of points v in an additive monoid M, together with a morphism into a linearly-ordered additive monoid f : M →+ S, the submonoid generated by those points of v which lie in the half space where f > 0 is generated by the subset of such points which are indecomposable with respect to points in this half space.

          If v is the set of roots of a crystallographic root system and S = ℚ, then this is [Ser87](Ch. V, §9, Lemma 2) and it may be used to prove that the root system has a base.

          theorem Subgroup.closure_image_isMulIndecomposable_baseOf {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [Finite ι] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) (hf : ∀ (i : ι), f (v i) 1) :
          theorem AddSubgroup.closure_image_isAddIndecomposable_baseOf {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [Finite ι] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) (hf : ∀ (i : ι), f (v i) 0) :
          theorem IsMulIndecomposable.pairwise_div_notMem_range {ι : Type u_1} {G : Type u_3} [CommGroup G] [InvolutiveInv ι] (v : ιG) (hv_one : ∀ (i : ι), v i 1) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (s t : Set ι) (hst : s {i : ι | IsMulIndecomposable v t i}) (hv_t : ∀ (i : ι), i t i⁻¹ t) :
          s.Pairwise fun (i j : ι) => v i / v jSet.range v
          theorem IsAddIndecomposable.pairwise_sub_notMem_range {ι : Type u_1} {G : Type u_3} [AddCommGroup G] [InvolutiveNeg ι] (v : ιG) (hv_zero : ∀ (i : ι), v i 0) (hv_neg : ∀ (i : ι), v (-i) = -v i) (s t : Set ι) (hst : s {i : ι | IsAddIndecomposable v t i}) (hv_t : ∀ (i : ι), i t -i t) :
          s.Pairwise fun (i j : ι) => v i - v jSet.range v
          theorem IsMulIndecomposable.pairwise_div_notMem_range' {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) (hf : ∀ (i : ι), f (v i) 1) (s : Set ι) (hst : s {j : ι | IsMulIndecomposable v {i : ι | 1 < f (v i)} j}) :
          s.Pairwise fun (i j : ι) => v i / v jSet.range v
          theorem IsAddIndecomposable.pairwise_sub_notMem_range' {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) (hf : ∀ (i : ι), f (v i) 0) (s : Set ι) (hst : s {j : ι | IsAddIndecomposable v {i : ι | 0 < f (v i)} j}) :
          s.Pairwise fun (i j : ι) => v i - v jSet.range v
          theorem IsMulIndecomposable.pairwise_baseOf_div_notMem {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) (hf : ∀ (i : ι), f (v i) 1) :
          (baseOf v f).Pairwise fun (i j : ι) => v i / v jSet.range v
          theorem IsAddIndecomposable.pairwise_baseOf_sub_notMem {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) (hf : ∀ (i : ι), f (v i) 0) :
          (baseOf v f).Pairwise fun (i j : ι) => v i - v jSet.range v
          theorem IsMulIndecomposable.mem_or_inv_mem_closure_baseOf {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [Finite ι] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) (hf : ∀ (i : ι), f (v i) 1) (i : ι) :
          theorem IsAddIndecomposable.mem_or_neg_mem_closure_baseOf {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [Finite ι] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) (hf : ∀ (i : ι), f (v i) 0) (i : ι) :
          theorem Submonoid.apply_ne_one_of_mem_or_inv_mem_closure {ι : Type u_1} {G : Type u_3} {S : Type u_4} [CommGroup G] [LinearOrder S] [InvolutiveInv ι] [CommGroup S] [IsOrderedMonoid S] (v : ιG) (hv_one : ∀ (i : ι), v i 1) (hv_inv : ∀ (i : ι), v i⁻¹ = (v i)⁻¹) (f : G →* S) (s : Set ι) (hsp : ∀ (i : ι), v i closure (v '' s) (v i)⁻¹ closure (v '' s)) (hf : is, 1 < f (v i)) (i : ι) :
          f (v i) 1
          theorem AddSubmonoid.apply_ne_zero_of_mem_or_neg_mem_closure {ι : Type u_1} {G : Type u_3} {S : Type u_4} [AddCommGroup G] [LinearOrder S] [InvolutiveNeg ι] [AddCommGroup S] [IsOrderedAddMonoid S] (v : ιG) (hv_zero : ∀ (i : ι), v i 0) (hv_neg : ∀ (i : ι), v (-i) = -v i) (f : G →+ S) (s : Set ι) (hsp : ∀ (i : ι), v i closure (v '' s) -v i closure (v '' s)) (hf : is, 0 < f (v i)) (i : ι) :
          f (v i) 0