Documentation

Mathlib.Algebra.Homology.ConcreteCategory

Homology of complexes in concrete categories #

The homology of short complexes in concrete categories was studied in Mathlib.Algebra.Homology.ShortComplex.ConcreteCategory. In this file, we introduce specific definitions and lemmas for the homology of homological complexes in concrete categories. In particular, we give a computation of the connecting homomorphism of the homology sequence in terms of (co)cycles.

noncomputable def HomologicalComplex.cyclesMk {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] {ι : Type u_1} {c : ComplexShape ι} (K : HomologicalComplex C c) {i : ι} (x : ((CategoryTheory.forget₂ C Ab).obj (K.X i))) (j : ι) (hj : c.next i = j) (hx : ((CategoryTheory.forget₂ C Ab).map (K.d i j)) x = 0) :
((CategoryTheory.forget₂ C Ab).obj (K.cycles i))

Constructor for cycles of a homological complex in a concrete category.

Equations
  • K.cyclesMk x j hj hx = (K.sc i).cyclesMk x
Instances For
    @[simp]
    theorem HomologicalComplex.i_cyclesMk {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] {ι : Type u_1} {c : ComplexShape ι} (K : HomologicalComplex C c) {i : ι} (x : ((CategoryTheory.forget₂ C Ab).obj (K.X i))) (j : ι) (hj : c.next i = j) (hx : ((CategoryTheory.forget₂ C Ab).map (K.d i j)) x = 0) :
    ((CategoryTheory.forget₂ C Ab).map (K.iCycles i)) (K.cyclesMk x j hj hx) = x
    theorem CategoryTheory.ShortComplex.ShortExact.δ_apply' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] {ι : Type u_1} {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : S.ShortExact) (i j : ι) (hij : c.Rel i j) (x₃ : ((CategoryTheory.forget₂ C Ab).obj (S.X₃.homology i))) (x₂ : ((CategoryTheory.forget₂ C Ab).obj (S.X₂.opcycles i))) (x₁ : ((CategoryTheory.forget₂ C Ab).obj (S.X₁.cycles j))) (h₂ : ((CategoryTheory.forget₂ C Ab).map (HomologicalComplex.opcyclesMap S.g i)) x₂ = ((CategoryTheory.forget₂ C Ab).map (S.X₃.homologyι i)) x₃) (h₁ : ((CategoryTheory.forget₂ C Ab).map (HomologicalComplex.cyclesMap S.f j)) x₁ = ((CategoryTheory.forget₂ C Ab).map (S.X₂.opcyclesToCycles i j)) x₂) :
    ((CategoryTheory.forget₂ C Ab).map (hS i j hij)) x₃ = ((CategoryTheory.forget₂ C Ab).map (S.X₁.homologyπ j)) x₁
    theorem CategoryTheory.ShortComplex.ShortExact.δ_apply {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] {ι : Type u_1} {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : S.ShortExact) (i j : ι) (hij : c.Rel i j) (x₃ : ((CategoryTheory.forget₂ C Ab).obj (S.X₃.X i))) (hx₃ : ((CategoryTheory.forget₂ C Ab).map (S.X₃.d i j)) x₃ = 0) (x₂ : ((CategoryTheory.forget₂ C Ab).obj (S.X₂.X i))) (hx₂ : ((CategoryTheory.forget₂ C Ab).map (S.g.f i)) x₂ = x₃) (x₁ : ((CategoryTheory.forget₂ C Ab).obj (S.X₁.X j))) (hx₁ : ((CategoryTheory.forget₂ C Ab).map (S.f.f j)) x₁ = ((CategoryTheory.forget₂ C Ab).map (S.X₂.d i j)) x₂) (k : ι) (hk : c.next j = k) :
    ((CategoryTheory.forget₂ C Ab).map (hS i j hij)) (((CategoryTheory.forget₂ C Ab).map (S.X₃.homologyπ i)) (S.X₃.cyclesMk x₃ j hx₃)) = ((CategoryTheory.forget₂ C Ab).map (S.X₁.homologyπ j)) (S.X₁.cyclesMk x₁ k hk )