Documentation

Mathlib.Algebra.Homology.DerivedCategory.ExactFunctor

An exact functor induces a functor on derived categories #

In this file, we show that if F : C₁ ⥤ C₂ is an exact functor between abelian categories, then there is an induced functor F.mapDerivedCategory : DerivedCategory C₁ ⥤ DerivedCategory C₂.

TODO #

The functor DerivedCategory C₁ ⥤ DerivedCategory C₂ induced by an exact functor F : C₁ ⥤ C₂ between abelian categories.

Equations
Instances For
    noncomputable def CategoryTheory.Functor.mapDerivedCategoryFactors {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] [CategoryTheory.Abelian C₁] [HasDerivedCategory C₁] {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] [CategoryTheory.Abelian C₂] [HasDerivedCategory C₂] (F : CategoryTheory.Functor C₁ C₂) [F.Additive] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] :
    DerivedCategory.Q.comp F.mapDerivedCategory (F.mapHomologicalComplex (ComplexShape.up )).comp DerivedCategory.Q

    The functor F.mapDerivedCategory is induced by F.mapHomologicalComplex (ComplexShape.up ℤ).

    Equations
    Instances For
      Equations
      • F.instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory = { iso' := F.mapDerivedCategoryFactors }
      noncomputable def CategoryTheory.Functor.mapDerivedCategoryFactorsh {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] [CategoryTheory.Abelian C₁] [HasDerivedCategory C₁] {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] [CategoryTheory.Abelian C₂] [HasDerivedCategory C₂] (F : CategoryTheory.Functor C₁ C₂) [F.Additive] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] :
      DerivedCategory.Qh.comp F.mapDerivedCategory (F.mapHomotopyCategory (ComplexShape.up )).comp DerivedCategory.Qh

      The functor F.mapDerivedCategory is induced by F.mapHomotopyCategory (ComplexShape.up ℤ).

      Equations
      • F.mapDerivedCategoryFactorsh = F.mapHomologicalComplexUpToQuasiIsoFactorsh (ComplexShape.up )
      Instances For
        Equations
        • F.instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory = { iso' := F.mapDerivedCategoryFactorsh }