An exact functor induces a functor on derived categories #
In this file, we show that if F : C₁ ⥤ C₂
is an exact functor between
abelian categories, then there is an induced triangulated functor
F.mapDerivedCategory : DerivedCategory C₁ ⥤ DerivedCategory C₂
.
noncomputable def
CategoryTheory.Functor.mapDerivedCategory
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
The functor DerivedCategory C₁ ⥤ DerivedCategory C₂
induced
by an exact functor F : C₁ ⥤ C₂
between abelian categories.
Equations
- F.mapDerivedCategory = F.mapHomologicalComplexUpToQuasiIso (ComplexShape.up ℤ)
Instances For
noncomputable def
CategoryTheory.Functor.mapDerivedCategoryFactors
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
DerivedCategory.Q.comp F.mapDerivedCategory ≅ (F.mapHomologicalComplex (ComplexShape.up ℤ)).comp DerivedCategory.Q
The functor F.mapDerivedCategory
is induced
by F.mapHomologicalComplex (ComplexShape.up ℤ)
.
Equations
- F.mapDerivedCategoryFactors = F.mapHomologicalComplexUpToQuasiIsoFactors (ComplexShape.up ℤ)
Instances For
noncomputable instance
CategoryTheory.Functor.instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
CategoryTheory.Localization.Lifting DerivedCategory.Q (HomologicalComplex.quasiIso C₁ (ComplexShape.up ℤ))
((F.mapHomologicalComplex (ComplexShape.up ℤ)).comp DerivedCategory.Q) F.mapDerivedCategory
Equations
- F.instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory = { iso' := F.mapDerivedCategoryFactors }
noncomputable def
CategoryTheory.Functor.mapDerivedCategoryFactorsh
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
DerivedCategory.Qh.comp F.mapDerivedCategory ≅ (F.mapHomotopyCategory (ComplexShape.up ℤ)).comp DerivedCategory.Qh
The functor F.mapDerivedCategory
is induced
by F.mapHomotopyCategory (ComplexShape.up ℤ)
.
Equations
- F.mapDerivedCategoryFactorsh = F.mapHomologicalComplexUpToQuasiIsoFactorsh (ComplexShape.up ℤ)
Instances For
theorem
CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
(K : CochainComplex C₁ ℤ)
:
F.mapDerivedCategoryFactorsh.hom.app ((HomotopyCategory.quotient C₁ (ComplexShape.up ℤ)).obj K) = CategoryTheory.CategoryStruct.comp (F.mapDerivedCategory.map ((DerivedCategory.quotientCompQhIso C₁).hom.app K))
(CategoryTheory.CategoryStruct.comp (F.mapDerivedCategoryFactors.hom.app K)
(CategoryTheory.CategoryStruct.comp
((DerivedCategory.quotientCompQhIso C₂).inv.app ((F.mapHomologicalComplex (ComplexShape.up ℤ)).obj K))
(DerivedCategory.Qh.map ((F.mapHomotopyCategoryFactors (ComplexShape.up ℤ)).inv.app K))))
noncomputable instance
CategoryTheory.Functor.instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
CategoryTheory.Localization.Lifting DerivedCategory.Qh (HomotopyCategory.quasiIso C₁ (ComplexShape.up ℤ))
((F.mapHomotopyCategory (ComplexShape.up ℤ)).comp DerivedCategory.Qh) F.mapDerivedCategory
Equations
- F.instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory = { iso' := F.mapDerivedCategoryFactorsh }
noncomputable instance
CategoryTheory.Functor.instCommShiftDerivedCategoryMapDerivedCategoryInt
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
F.mapDerivedCategory.CommShift ℤ
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
CategoryTheory.NatTrans.CommShift F.mapDerivedCategoryFactorsh.hom ℤ
instance
CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
CategoryTheory.NatTrans.CommShift F.mapDerivedCategoryFactors.hom ℤ
instance
CategoryTheory.Functor.instIsTriangulatedDerivedCategoryMapDerivedCategory
{C₁ : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C₁]
[CategoryTheory.Abelian C₁]
[HasDerivedCategory C₁]
{C₂ : Type u₂}
[CategoryTheory.Category.{v₂, u₂} C₂]
[CategoryTheory.Abelian C₂]
[HasDerivedCategory C₂]
(F : CategoryTheory.Functor C₁ C₂)
[F.Additive]
[CategoryTheory.Limits.PreservesFiniteLimits F]
[CategoryTheory.Limits.PreservesFiniteColimits F]
:
F.mapDerivedCategory.IsTriangulated