Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.ExtClass

The Ext class of a short exact sequence #

In this file, given a short exact short complex S : ShortComplex C in an abelian category, we construct the associated class in Ext S.X₃ S.X₁ 1.

The class in Ext S.X₃ S.X₁ 1 that is attached to a short exact short complex S in an abelian category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) {Y : C} {n : } (γ : CategoryTheory.Abelian.Ext S.X₁ Y n) {n' : } (h : 1 + n = n') :
    (CategoryTheory.Abelian.Ext.mk₀ S.g).comp (hS.extClass.comp γ h) = 0
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) {Y : C} {n : } (γ : CategoryTheory.Abelian.Ext S.X₂ Y n) {n' : } {h : 1 + n = n'} :
    hS.extClass.comp ((CategoryTheory.Abelian.Ext.mk₀ S.f).comp γ ) h = 0