Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.ExtClass

The Ext class of a short exact sequence #

In this file, given a short exact short complex S : ShortComplex C in an abelian category, we construct the associated class in Ext S.X₃ S.X₁ 1.

noncomputable def CategoryTheory.ShortComplex.ShortExact.extClass {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) :
Abelian.Ext S.X₃ S.X₁ 1

The class in Ext S.X₃ S.X₁ 1 that is attached to a short exact short complex S in an abelian category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.extClass_hom {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) [HasDerivedCategory C] :
    hS.extClass.hom = hS.singleδ
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.comp_extClass {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) :
    (Abelian.Ext.mk₀ S.g).comp hS.extClass = 0
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.comp_extClass_assoc {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) {Y : C} {n : } (γ : Abelian.Ext S.X₁ Y n) {n' : } (h : 1 + n = n') :
    (Abelian.Ext.mk₀ S.g).comp (hS.extClass.comp γ h) = 0
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.extClass_comp {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) :
    hS.extClass.comp (Abelian.Ext.mk₀ S.f) = 0
    @[simp]
    theorem CategoryTheory.ShortComplex.ShortExact.extClass_comp_assoc {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) {Y : C} {n : } (γ : Abelian.Ext S.X₂ Y n) {n' : } {h : 1 + n = n'} :
    hS.extClass.comp ((Abelian.Ext.mk₀ S.f).comp γ ) h = 0