K-injective cochain complexes #
We define the notion of K-injective cochain complex in an abelian category, and show that bounded below complexes of injective objects are K-injective.
TODO (@joelriou) #
- Show that a cochain complex is K-injective iff its image in the homotopy category belongs to the right orthogonal of the triangulated subcategory of acyclic complexes
- Deduce that we can compute morphisms to a K-injective complex in the derived category as homotopy classes of morphisms
- Provide an API for computing
Ext-groups using an injective resolution - Dualize everything
References #
- [N. Spaltenstein, Resolutions of unbounded complexes][spaltenstein1998]
class
CochainComplex.IsKInjective
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(L : CochainComplex C ℤ)
:
A cochain complex L is K-injective if any morphism K ⟶ L
with K acyclic is homotopic to zero.
- nonempty_homotopy_zero {K : CochainComplex C ℤ} (f : K ⟶ L) : HomologicalComplex.Acyclic K → Nonempty (Homotopy f 0)
Instances
theorem
CochainComplex.isKInjective_of_injective_aux
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
{K L : CochainComplex C ℤ}
(f : K ⟶ L)
(α : HomComplex.Cochain K L (-1))
(n m : ℤ)
(hnm : n + 1 = m)
(hK : HomologicalComplex.ExactAt K m)
[CategoryTheory.Injective (L.X m)]
(hα : (HomComplex.δ (-1) 0 α).EqUpTo (HomComplex.Cochain.ofHom f) n)
:
∃ (h : K.X (n + 2) ⟶ L.X (n + 1)),
(HomComplex.δ (-1) 0 (α + HomComplex.Cochain.single h (-1))).EqUpTo (HomComplex.Cochain.ofHom f) m
theorem
CochainComplex.isKInjective_of_injective
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(L : CochainComplex C ℤ)
(d : ℤ)
[L.IsStrictlyGE d]
[∀ (n : ℤ), CategoryTheory.Injective (L.X n)]
: