Orthogonal of triangulated subcategories #
Let P be a triangulated subcategory of a pretriangulated category C. We show
that P.rightOrthogonal (which consists of objects Y with no nonzero
map X ⟶ Y with X satisfying P) is a triangulated subcategory. The dual result
for P.leftOrthogonal is also obtained.
instance
CategoryTheory.ObjectProperty.instIsStableUnderShiftRightOrthogonal
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
{M : Type u_1}
[AddGroup M]
[HasShift C M]
[Limits.HasZeroMorphisms C]
[P.IsStableUnderShift M]
:
instance
CategoryTheory.ObjectProperty.instIsStableUnderShiftLeftOrthogonal
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
{M : Type u_1}
[AddGroup M]
[HasShift C M]
[Limits.HasZeroMorphisms C]
[P.IsStableUnderShift M]
:
instance
CategoryTheory.ObjectProperty.instIsTriangulatedClosed₂RightOrthogonal
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
:
instance
CategoryTheory.ObjectProperty.instIsTriangulatedClosed₂LeftOrthogonal
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
:
instance
CategoryTheory.ObjectProperty.instIsTriangulatedRightOrthogonalOfIsStableUnderShiftInt
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
[P.IsStableUnderShift ℤ]
:
instance
CategoryTheory.ObjectProperty.instIsTriangulatedLeftOrthogonalOfIsStableUnderShiftInt
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
[P.IsStableUnderShift ℤ]
:
theorem
CategoryTheory.ObjectProperty.isLocal_trW
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
[P.IsTriangulated]
:
theorem
CategoryTheory.ObjectProperty.rightOrthogonal.map_bijective_of_isTriangulated
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
[Limits.HasZeroObject C]
[HasShift C ℤ]
[Preadditive C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
[P.IsTriangulated]
[IsTriangulated C]
{Y : C}
(hY : P.rightOrthogonal Y)
(L : Functor C D)
[L.IsLocalization P.trW]
(X : C)
: