The mapping cone of a monomorphism, up to a quasi-isomophism #
If S
is a short exact short complex of cochain complexes in an abelian category,
we construct a quasi-isomorphism descShortComplex S : mappingCone S.f ⟶ S.X₃
.
We obtain this by comparing the homology sequence of S
and the homology
sequence of the homology functor on the homotopy category, applied to the
distinguished triangle attached to the mapping cone of S.f
.
theorem
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(T : CategoryTheory.Pretriangulated.Triangle (CochainComplex C ℤ))
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
:
(HomotopyCategory.homologyFunctor C (ComplexShape.up ℤ) 0).homologySequenceδ
((HomotopyCategory.quotient C (ComplexShape.up ℤ)).mapTriangle.obj T) n₀ n₁ h = CategoryTheory.CategoryStruct.comp ((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₀).hom.app T.obj₃)
(CategoryTheory.CategoryStruct.comp
((HomologicalComplex.homologyFunctor C (ComplexShape.up ℤ) 0).shiftMap T.mor₃ n₀ n₁ ⋯)
((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₁).inv.app T.obj₁))
theorem
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(T : CategoryTheory.Pretriangulated.Triangle (CochainComplex C ℤ))
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
{Z : C}
(h✝ :
((HomotopyCategory.homologyFunctor C (ComplexShape.up ℤ) 0).shift n₁).obj
((HomotopyCategory.quotient C (ComplexShape.up ℤ)).mapTriangle.obj T).obj₁ ⟶ Z)
:
CategoryTheory.CategoryStruct.comp
((HomotopyCategory.homologyFunctor C (ComplexShape.up ℤ) 0).homologySequenceδ
((HomotopyCategory.quotient C (ComplexShape.up ℤ)).mapTriangle.obj T) n₀ n₁ h)
h✝ = CategoryTheory.CategoryStruct.comp ((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₀).hom.app T.obj₃)
(CategoryTheory.CategoryStruct.comp
((HomologicalComplex.homologyFunctor C (ComplexShape.up ℤ) 0).shiftMap T.mor₃ n₀ n₁ ⋯)
(CategoryTheory.CategoryStruct.comp
((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₁).inv.app T.obj₁) h✝))
noncomputable def
CochainComplex.mappingCone.descShortComplex
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
:
mappingCone S.f ⟶ S.X₃
The canonical morphism mappingCone S.f ⟶ S.X₃
when S
is a short complex
of cochain complexes.
Equations
Instances For
@[simp]
theorem
CochainComplex.mappingCone.inr_descShortComplex
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
:
CategoryTheory.CategoryStruct.comp (inr S.f) (descShortComplex S) = S.g
@[simp]
theorem
CochainComplex.mappingCone.inr_descShortComplex_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
{Z : CochainComplex C ℤ}
(h : S.X₃ ⟶ Z)
:
@[simp]
theorem
CochainComplex.mappingCone.inr_f_descShortComplex_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
(n : ℤ)
:
CategoryTheory.CategoryStruct.comp ((inr S.f).f n) ((descShortComplex S).f n) = S.g.f n
@[simp]
theorem
CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
(n : ℤ)
{Z : C}
(h : S.X₃.X n ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((inr S.f).f n) (CategoryTheory.CategoryStruct.comp ((descShortComplex S).f n) h) = CategoryTheory.CategoryStruct.comp (S.g.f n) h
@[simp]
theorem
CochainComplex.mappingCone.inl_v_descShortComplex_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
(i j : ℤ)
(h : i + -1 = j)
:
CategoryTheory.CategoryStruct.comp ((inl S.f).v i j h) ((descShortComplex S).f j) = 0
@[simp]
theorem
CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex (CochainComplex C ℤ))
(i j : ℤ)
(h : i + -1 = j)
{Z : C}
(h✝ : S.X₃.X j ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((inl S.f).v i j h)
(CategoryTheory.CategoryStruct.comp ((descShortComplex S).f j) h✝) = CategoryTheory.CategoryStruct.comp 0 h✝
theorem
CochainComplex.mappingCone.homologySequenceδ_triangleh
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
{S : CategoryTheory.ShortComplex (CochainComplex C ℤ)}
(hS : S.ShortExact)
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
:
(HomotopyCategory.homologyFunctor C (ComplexShape.up ℤ) 0).homologySequenceδ (triangleh S.f) n₀ n₁ h = CategoryTheory.CategoryStruct.comp
((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₀).hom.app (mappingCone S.f))
(CategoryTheory.CategoryStruct.comp (HomologicalComplex.homologyMap (descShortComplex S) n₀)
(CategoryTheory.CategoryStruct.comp (hS.δ n₀ n₁ h)
((HomotopyCategory.homologyFunctorFactors C (ComplexShape.up ℤ) n₁).inv.app S.X₁)))
theorem
CochainComplex.mappingCone.quasiIso_descShortComplex
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
{S : CategoryTheory.ShortComplex (CochainComplex C ℤ)}
(hS : S.ShortExact)
: