Equivalence between IsLocalizedModule
and IsLocalization
#
theorem
isLocalizedModule_iff_isLocalization
{R : Type u_1}
[CommSemiring R]
{S : Submonoid R}
{A : Type u_2}
{Aₛ : Type u_3}
[CommSemiring A]
[Algebra R A]
[CommSemiring Aₛ]
[Algebra A Aₛ]
[Algebra R Aₛ]
[IsScalarTower R A Aₛ]
:
IsLocalizedModule S (IsScalarTower.toAlgHom R A Aₛ).toLinearMap ↔ IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ
instance
instIsLocalizedModuleToLinearMapToAlgHomOfIsLocalizationAlgebraMapSubmonoid
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
{A : Type u_2}
{Aₛ : Type u_3}
[CommSemiring A]
[Algebra R A]
[CommSemiring Aₛ]
[Algebra A Aₛ]
[Algebra R Aₛ]
[IsScalarTower R A Aₛ]
[h : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ]
:
IsLocalizedModule S (IsScalarTower.toAlgHom R A Aₛ).toLinearMap
Equations
- ⋯ = ⋯
theorem
isLocalizedModule_iff_isLocalization'
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(R' : Type u_2)
[CommSemiring R']
[Algebra R R']
:
IsLocalizedModule S (Algebra.ofId R R').toLinearMap ↔ IsLocalization S R'
instance
instIsLocalizedModuleLinearMapOfIsLocalization
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
{A : Type u_2}
[CommRing A]
[Algebra R A]
[IsLocalization S A]
:
IsLocalizedModule S (Algebra.linearMap R A)
Equations
- ⋯ = ⋯