Documentation

Mathlib.Algebra.Module.LocalizedModule.IsLocalization

Equivalence between IsLocalizedModule and IsLocalization #

A is a localization of a commutative semiring R with respect to S iff the associated linear map R →ₗ[R] A is a localization of modules with respect to S.

theorem IsLocalization.mk'_algebraMap_eq_mk' {R : Type u_1} [CommSemiring R] {S : Submonoid R} {A : Type u_2} {Aₛ : Type u_3} [CommSemiring A] [Algebra R A] [CommSemiring Aₛ] [Algebra A Aₛ] [Algebra R Aₛ] [IsScalarTower R A Aₛ] [IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ] {x : A} {s : S} :
mk' Aₛ x (algebraMap R A) s, = IsLocalizedModule.mk' (IsScalarTower.toAlgHom R A Aₛ).toLinearMap x s

IsLocalization.mk' agrees with IsLocalizedModule.mk'.

theorem IsLocalization.mk'_eq_mk' {R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommSemiring A] [Algebra R A] [IsLocalization S A] (x : R) (s : S) :

IsLocalization.mk' agrees with IsLocalizedModule.mk'.