Covolume of ℤ-lattices #
Let E
be a finite dimensional real vector space.
Let L
be a ℤ
-lattice L
defined as a discrete ℤ
-submodule of E
that spans E
over ℝ
.
Main definitions and results #
ZLattice.covolume
: the covolume ofL
defined as the volume of an arbitrary fundamental domain ofL
.ZLattice.covolume_eq_measure_fundamentalDomain
: the covolume ofL
does not depend on the choice of the fundamental domain ofL
.ZLattice.covolume_eq_det
: ifL
is a lattice inℝ^n
, then its covolume is the absolute value of the determinant of anyℤ
-basis ofL
.ZLattice.covolume.tendsto_card_div_pow
: Lets
be a bounded measurable set ofι → ℝ
, then the number of points ins ∩ n⁻¹ • L
divided byn ^ card ι
tends tovolume s / covolume L
whenn : ℕ
tends to infinity. See alsoZLattice.covolume.tendsto_card_div_pow'
for a version forInnerProductSpace ℝ E
andZLattice.covolume.tendsto_card_div_pow''
for the general version.ZLattice.covolume.tendsto_card_le_div
: LetX
be a cone inι → ℝ
and letF : (ι → ℝ) → ℝ
be a function such thatF (c • x) = c ^ card ι * F x
. Then the number of pointsx ∈ X
such thatF x ≤ c
divided byc
tends tovolume {x ∈ X | F x ≤ 1} / covolume L
whenc : ℝ
tends to infinity. See alsoZLattice.covolume.tendsto_card_le_div'
for a version forInnerProductSpace ℝ E
andZLattice.covolume.tendsto_card_le_div''
for the general version.
Naming convention #
Some results are true in the case where the ambient finite dimensional real vector space is the
pi-space ι → ℝ
and in the case where it is an InnerProductSpace
. We use the following
convention: the plain name is for the pi case, for eg. volume_image_eq_volume_div_covolume
. For
the same result in the InnerProductSpace
case, we add a prime
, for eg.
volume_image_eq_volume_div_covolume'
. When the same result exists in the
general case, we had two primes, eg. covolume.tendsto_card_div_pow''
.
The covolume of a ℤ
-lattice is the volume of some fundamental domain; see
ZLattice.covolume_eq_volume
for the proof that the volume does not depend on the choice of
the fundamental domain.
Equations
- ZLattice.covolume L μ = (MeasureTheory.addCovolume (↥L) E μ).toReal
Instances For
A more general version of ZLattice.volume_image_eq_volume_div_covolume
;
see the Naming conventions
section in the introduction.
A version of ZLattice.covolume.tendsto_card_div_pow
for the general case;
see the Naming convention
section in the introduction.
A version of ZLattice.covolume.tendsto_card_le_div
for the general case;
see the Naming conventions
section in the introduction.
A version of ZLattice.covolume.tendsto_card_div_pow
for the InnerProductSpace
case;
see the Naming convention
section in the introduction.
A version of ZLattice.covolume.tendsto_card_le_div
for the InnerProductSpace
case;
see the Naming convention
section in the introduction.