Documentation

Mathlib.Algebra.Module.ZLattice.Covolume

Covolume of ℤ-lattices #

Let E be a finite dimensional real vector space.

Let L be a -lattice L defined as a discrete -submodule of E that spans E over .

Main definitions and results #

def ZLattice.covolume {E : Type u_1} [NormedAddCommGroup E] [MeasurableSpace E] (L : Submodule E) (μ : MeasureTheory.Measure E := by volume_tac) :

The covolume of a -lattice is the volume of some fundamental domain; see ZLattice.covolume_eq_volume for the proof that the volume does not depend on the choice of the fundamental domain.

Equations
Instances For
    theorem ZLattice.covolume_eq_det_mul_measure {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [MeasurableSpace E] [BorelSpace E] (L : Submodule E) [DiscreteTopology L] [IsZLattice L] (μ : MeasureTheory.Measure E := by volume_tac) [MeasureTheory.Measure.IsAddHaarMeasure μ] {ι : Type u_2} [Fintype ι] [DecidableEq ι] (b : Basis ι L) (b₀ : Basis ι E) :
    ZLattice.covolume L μ = |b₀.det (Subtype.val b)| * (μ (ZSpan.fundamentalDomain b₀)).toReal
    theorem ZLattice.covolume_eq_det {ι : Type u_2} [Fintype ι] [DecidableEq ι] (L : Submodule (ι)) [DiscreteTopology L] [IsZLattice L] (b : Basis ι L) :
    ZLattice.covolume L MeasureTheory.volume = |(Matrix.of (Subtype.val b)).det|