Cardinal of quotient of free finite ℤ
-modules by submodules of full rank #
Main results #
Submodule.natAbs_det_basis_change
: letb
be aℤ
-basis for a moduleM
overℤ
and letbN
be a basis for a submoduleN
of the same dimension. Then the cardinal ofM ⧸ N
is given by taking the determinant ofbN
overb
.
theorem
Submodule.natAbs_det_equiv
{M : Type u_1}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
(N : Submodule ℤ M)
{E : Type u_2}
[EquivLike E M ↥N]
[AddEquivClass E M ↥N]
(e : E)
:
Let e : M ≃ N
be an additive isomorphism (therefore a ℤ
-linear equiv).
Then an alternative way to compute the cardinality of the quotient M ⧸ N
is given by taking
the determinant of e
.
See natAbs_det_basis_change
for a more familiar formulation of this result.
theorem
Submodule.natAbs_det_basis_change
{M : Type u_1}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(b : Basis ι ℤ M)
(N : Submodule ℤ M)
(bN : Basis ι ℤ ↥N)
:
Let b
be a basis for M
over ℤ
and bN
a basis for N
over ℤ
of the same dimension.
Then an alternative way to compute the cardinality of M ⧸ N
is given by taking the determinant
of bN
over b
.
theorem
AddSubgroup.index_eq_natAbs_det
{E : Type u_1}
[AddCommGroup E]
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
(bE : Basis ι ℤ E)
(N : AddSubgroup E)
(bN : Basis ι ℤ ↥N)
:
theorem
AddSubgroup.relindex_eq_natAbs_det
{E : Type u_1}
[AddCommGroup E]
(L₁ L₂ : AddSubgroup E)
(H : L₁ ≤ L₂)
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
(b₁ : Basis ι ℤ ↥(toIntSubmodule L₁))
(b₂ : Basis ι ℤ ↥(toIntSubmodule L₂))
: