Documentation

Mathlib.LinearAlgebra.FreeModule.Finite.Quotient

Quotient of submodules of full rank in free finite modules over PIDs #

Main results #

noncomputable def Submodule.quotientEquivPiSpan {ι : Type u_1} {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [IsPrincipalIdealRing R] [Finite ι] (N : Submodule R M) (b : Basis ι R M) (h : Module.finrank R N = Module.finrank R M) :
(M N) ≃ₗ[R] (i : ι) → R Ideal.span {smithNormalFormCoeffs b h i}

We can write the quotient by a submodule of full rank over a PID as a product of quotients by principal ideals.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def Submodule.quotientEquivPiZMod {ι : Type u_1} {M : Type u_3} [AddCommGroup M] [Finite ι] (N : Submodule M) (b : Basis ι M) (h : Module.finrank N = Module.finrank M) :
    M N ≃+ ((i : ι) → ZMod (smithNormalFormCoeffs b h i).natAbs)

    Quotients by submodules of full rank of free finite -modules are isomorphic to a direct product of ZMod.

    Equations
    Instances For

      A submodule of full rank of a free finite -module has a finite quotient. It can't be an instance because of the side condition Module.finrank ℤ N = Module.finrank ℤ M.

      @[deprecated Submodule.finiteQuotientOfFreeOfRankEq (since := "2025-03-15")]

      Alias of Submodule.finiteQuotientOfFreeOfRankEq.


      A submodule of full rank of a free finite -module has a finite quotient. It can't be an instance because of the side condition Module.finrank ℤ N = Module.finrank ℤ M.

      noncomputable def Submodule.quotientEquivDirectSum {ι : Type u_1} {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [IsPrincipalIdealRing R] [Finite ι] (F : Type u_4) [CommRing F] [Algebra F R] [Module F M] [IsScalarTower F R M] (b : Basis ι R M) {N : Submodule R M} (h : Module.finrank R N = Module.finrank R M) :
      (M N) ≃ₗ[F] DirectSum ι fun (i : ι) => R Ideal.span {smithNormalFormCoeffs b h i}

      Decompose M⧸N as a direct sum of cyclic R-modules (quotients by the ideals generated by Smith coefficients of N).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Submodule.finrank_quotient_eq_sum {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [IsPrincipalIdealRing R] (F : Type u_4) [CommRing F] [Algebra F R] [Module F M] [IsScalarTower F R M] {N : Submodule R M} {ι : Type u_5} [Fintype ι] (b : Basis ι R M) [Nontrivial F] (h : Module.finrank R N = Module.finrank R M) [∀ (i : ι), Module.Free F (R Ideal.span {smithNormalFormCoeffs b h i})] [∀ (i : ι), Module.Finite F (R Ideal.span {smithNormalFormCoeffs b h i})] :