Quotient of submodules of full rank in free finite modules over PIDs #
Main results #
Submodule.quotientEquivPiSpan
:M ⧸ N
, ifM
is free finite module over a PIDR
andN
is a submodule of full rank, can be written as a product of quotients ofR
by principal ideals.
noncomputable def
Submodule.quotientEquivPiSpan
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[IsDomain R]
[IsPrincipalIdealRing R]
[Finite ι]
(N : Submodule R M)
(b : Basis ι R M)
(h : Module.finrank R ↥N = Module.finrank R M)
:
We can write the quotient by a submodule of full rank over a PID as a product of quotients by principal ideals.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Submodule.quotientEquivPiZMod
{ι : Type u_1}
{M : Type u_3}
[AddCommGroup M]
[Finite ι]
(N : Submodule ℤ M)
(b : Basis ι ℤ M)
(h : Module.finrank ℤ ↥N = Module.finrank ℤ M)
:
Quotients by submodules of full rank of free finite ℤ
-modules are isomorphic
to a direct product of ZMod
.
Equations
- N.quotientEquivPiZMod b h = (↑(N.quotientEquivPiSpan b h)).trans (AddEquiv.piCongrRight fun (i : ι) => ↑(Submodule.smithNormalFormCoeffs b h i).quotientSpanEquivZMod)
Instances For
theorem
Submodule.finiteQuotientOfFreeOfRankEq
{M : Type u_3}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
(N : Submodule ℤ M)
(h : Module.finrank ℤ ↥N = Module.finrank ℤ M)
:
A submodule of full rank of a free finite ℤ
-module has a finite quotient.
It can't be an instance because of the side condition Module.finrank ℤ N = Module.finrank ℤ M
.
@[deprecated Submodule.finiteQuotientOfFreeOfRankEq (since := "2025-03-15")]
theorem
Submodule.fintypeQuotientOfFreeOfRankEq
{M : Type u_3}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
(N : Submodule ℤ M)
(h : Module.finrank ℤ ↥N = Module.finrank ℤ M)
:
Alias of Submodule.finiteQuotientOfFreeOfRankEq
.
A submodule of full rank of a free finite ℤ
-module has a finite quotient.
It can't be an instance because of the side condition Module.finrank ℤ N = Module.finrank ℤ M
.
noncomputable def
Submodule.quotientEquivDirectSum
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[IsDomain R]
[IsPrincipalIdealRing R]
[Finite ι]
(F : Type u_4)
[CommRing F]
[Algebra F R]
[Module F M]
[IsScalarTower F R M]
(b : Basis ι R M)
{N : Submodule R M}
(h : Module.finrank R ↥N = Module.finrank R M)
:
Decompose M⧸N
as a direct sum of cyclic R
-modules
(quotients by the ideals generated by Smith coefficients of N
).
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Submodule.finrank_quotient_eq_sum
{R : Type u_2}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[IsDomain R]
[IsPrincipalIdealRing R]
(F : Type u_4)
[CommRing F]
[Algebra F R]
[Module F M]
[IsScalarTower F R M]
{N : Submodule R M}
{ι : Type u_5}
[Fintype ι]
(b : Basis ι R M)
[Nontrivial F]
(h : Module.finrank R ↥N = Module.finrank R M)
[∀ (i : ι), Module.Free F (R ⧸ Ideal.span {smithNormalFormCoeffs b h i})]
[∀ (i : ι), Module.Finite F (R ⧸ Ideal.span {smithNormalFormCoeffs b h i})]
: