ZMod n
and quotient groups / rings #
This file relates ZMod n
to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}
.
Main definitions #
ZMod.quotient_span_nat_equiv_zmod
andZMod.quotientSpanEquivZMod
:ZMod n
is the ring quotient ofℤ
byn ℤ : Ideal.span {n}
(wheren : ℕ
andn : ℤ
respectively)
Tags #
zmod, quotient ring, ideal quotient
ℤ
modulo the ideal generated by n : ℕ
is ZMod n
.
Equations
- Int.quotientSpanNatEquivZMod n = (Ideal.quotEquivOfEq ⋯).symm.trans (RingHom.quotientKerEquivOfRightInverse ⋯)
Instances For
ℤ
modulo the ideal generated by a : ℤ
is ZMod a.natAbs
.
Equations
- a.quotientSpanEquivZMod = (Ideal.quotEquivOfEq ⋯).symm.trans (Int.quotientSpanNatEquivZMod a.natAbs)
Instances For
def
ZMod.prodEquivPi
{ι : Type u_3}
[Fintype ι]
(a : ι → ℕ)
(coprime : Pairwise (Function.onFun Nat.Coprime a))
:
The Chinese remainder theorem, elementary version for ZMod
. See also
Mathlib.Data.ZMod.Basic
for versions involving only two numbers.
Equations
- One or more equations did not get rendered due to their size.