Documentation

Mathlib.Data.ZMod.QuotientRing

ZMod n and quotient groups / rings #

This file relates ZMod n to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}.

Main definitions #

Tags #

zmod, quotient ring, ideal quotient

modulo the ideal generated by n : ℕ is ZMod n.

Equations
Instances For

    modulo the ideal generated by a : ℤ is ZMod a.natAbs.

    Equations
    Instances For
      def ZMod.prodEquivPi {ι : Type u_3} [Fintype ι] (a : ι) (coprime : Pairwise (Function.onFun Nat.Coprime a)) :
      ZMod (∏ i : ι, a i) ≃+* ((i : ι) → ZMod (a i))

      The Chinese remainder theorem, elementary version for ZMod. See also Mathlib.Data.ZMod.Basic for versions involving only two numbers.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For