Partial derivatives of polynomials #
This file defines the notion of the formal partial derivative of a polynomial, the derivative with respect to a single variable. This derivative is not connected to the notion of derivative from analysis. It is based purely on the polynomial exponents and coefficients.
Main declarations #
MvPolynomial.pderiv i p
: the partial derivative ofp
with respect toi
, as a bundled derivation ofMvPolynomial σ R
.
Notation #
As in other polynomial files, we typically use the notation:
σ : Type*
(indexing the variables)R : Type*
[CommRing R]
(the coefficients)s : σ →₀ ℕ
, a function fromσ
toℕ
which is zero away from a finite set. This will give rise to a monomial inMvPolynomial σ R
which mathematicians might callX^s
a : R
i : σ
, with corresponding monomialX i
, often denotedX_i
by mathematiciansp : MvPolynomial σ R
def
MvPolynomial.pderiv
{R : Type u}
{σ : Type v}
[CommSemiring R]
(i : σ)
:
Derivation R (MvPolynomial σ R) (MvPolynomial σ R)
pderiv i p
is the partial derivative of p
with respect to i
Equations
Instances For
theorem
MvPolynomial.pderiv_def
{R : Type u}
{σ : Type v}
[CommSemiring R]
[DecidableEq σ]
(i : σ)
:
@[simp]
theorem
MvPolynomial.pderiv_monomial
{R : Type u}
{σ : Type v}
{a : R}
{s : σ →₀ ℕ}
[CommSemiring R]
{i : σ}
:
(MvPolynomial.pderiv i) ((MvPolynomial.monomial s) a) = (MvPolynomial.monomial (s - Finsupp.single i 1)) (a * ↑(s i))
theorem
MvPolynomial.pderiv_C
{R : Type u}
{σ : Type v}
{a : R}
[CommSemiring R]
{i : σ}
:
(MvPolynomial.pderiv i) (MvPolynomial.C a) = 0
theorem
MvPolynomial.pderiv_one
{R : Type u}
{σ : Type v}
[CommSemiring R]
{i : σ}
:
(MvPolynomial.pderiv i) 1 = 0
@[simp]
theorem
MvPolynomial.pderiv_X
{R : Type u}
{σ : Type v}
[CommSemiring R]
[DecidableEq σ]
(i j : σ)
:
(MvPolynomial.pderiv i) (MvPolynomial.X j) = Pi.single i 1 j
@[simp]
theorem
MvPolynomial.pderiv_X_self
{R : Type u}
{σ : Type v}
[CommSemiring R]
(i : σ)
:
(MvPolynomial.pderiv i) (MvPolynomial.X i) = 1
@[simp]
theorem
MvPolynomial.pderiv_X_of_ne
{R : Type u}
{σ : Type v}
[CommSemiring R]
{i j : σ}
(h : j ≠ i)
:
(MvPolynomial.pderiv i) (MvPolynomial.X j) = 0
theorem
MvPolynomial.pderiv_eq_zero_of_not_mem_vars
{R : Type u}
{σ : Type v}
[CommSemiring R]
{i : σ}
{f : MvPolynomial σ R}
(h : i ∉ f.vars)
:
(MvPolynomial.pderiv i) f = 0
theorem
MvPolynomial.pderiv_monomial_single
{R : Type u}
{σ : Type v}
{a : R}
[CommSemiring R]
{i : σ}
{n : ℕ}
:
(MvPolynomial.pderiv i) ((MvPolynomial.monomial (Finsupp.single i n)) a) = (MvPolynomial.monomial (Finsupp.single i (n - 1))) (a * ↑n)
theorem
MvPolynomial.pderiv_mul
{R : Type u}
{σ : Type v}
[CommSemiring R]
{i : σ}
{f g : MvPolynomial σ R}
:
(MvPolynomial.pderiv i) (f * g) = (MvPolynomial.pderiv i) f * g + f * (MvPolynomial.pderiv i) g
theorem
MvPolynomial.pderiv_pow
{R : Type u}
{σ : Type v}
[CommSemiring R]
{i : σ}
{f : MvPolynomial σ R}
{n : ℕ}
:
(MvPolynomial.pderiv i) (f ^ n) = ↑n * f ^ (n - 1) * (MvPolynomial.pderiv i) f
theorem
MvPolynomial.pderiv_C_mul
{R : Type u}
{σ : Type v}
{a : R}
[CommSemiring R]
{f : MvPolynomial σ R}
{i : σ}
:
(MvPolynomial.pderiv i) (MvPolynomial.C a * f) = MvPolynomial.C a * (MvPolynomial.pderiv i) f
theorem
MvPolynomial.pderiv_map
{R : Type u}
{σ : Type v}
[CommSemiring R]
{S : Type u_1}
[CommSemiring S]
{φ : R →+* S}
{f : MvPolynomial σ R}
{i : σ}
:
(MvPolynomial.pderiv i) ((MvPolynomial.map φ) f) = (MvPolynomial.map φ) ((MvPolynomial.pderiv i) f)
theorem
MvPolynomial.pderiv_rename
{R : Type u}
{σ : Type v}
[CommSemiring R]
{τ : Type u_1}
{f : σ → τ}
(hf : Function.Injective f)
(x : σ)
(p : MvPolynomial σ R)
:
(MvPolynomial.pderiv (f x)) ((MvPolynomial.rename f) p) = (MvPolynomial.rename f) ((MvPolynomial.pderiv x) p)
theorem
MvPolynomial.aeval_sum_elim_pderiv_inl
{R : Type u}
{σ : Type v}
[CommSemiring R]
{S : Type u_1}
{τ : Type u_2}
[CommRing S]
[Algebra R S]
(p : MvPolynomial (σ ⊕ τ) R)
(f : τ → S)
(j : σ)
:
(MvPolynomial.aeval (Sum.elim MvPolynomial.X (⇑MvPolynomial.C ∘ f))) ((MvPolynomial.pderiv (Sum.inl j)) p) = (MvPolynomial.pderiv j) ((MvPolynomial.aeval (Sum.elim MvPolynomial.X (⇑MvPolynomial.C ∘ f))) p)