Documentation

Mathlib.Algebra.Tropical.Basic

Tropical algebraic structures #

This file defines algebraic structures of the (min-)tropical numbers, up to the tropical semiring. Some basic lemmas about conversion from the base type R to Tropical R are provided, as well as the expected implementations of tropical addition and tropical multiplication.

Main declarations #

Implementation notes #

The tropical structure relies on Top and min. For the max-tropical numbers, use OrderDual R.

Inspiration was drawn from the implementation of Additive/Multiplicative/Opposite, where a type synonym is created with some barebones API, and quickly made irreducible.

Algebraic structures are provided with as few typeclass assumptions as possible, even though most references rely on Semiring (Tropical R) for building up the whole theory.

References followed #

@[irreducible]
def Tropical (R : Type u) :

The tropicalization of a type R.

Equations
Instances For
    def Tropical.trop {R : Type u} :
    RTropical R

    Reinterpret x : R as an element of Tropical R. See Tropical.tropEquiv for the equivalence.

    Equations
    Instances For
      def Tropical.untrop {R : Type u} :
      Tropical RR

      Reinterpret x : Tropical R as an element of R. See Tropical.tropEquiv for the equivalence.

      Equations
      Instances For
        @[simp]
        theorem Tropical.trop_inj_iff {R : Type u} (x y : R) :
        trop x = trop y x = y
        @[simp]
        theorem Tropical.untrop_inj_iff {R : Type u} (x y : Tropical R) :
        untrop x = untrop y x = y
        @[simp]
        theorem Tropical.trop_untrop {R : Type u} (x : Tropical R) :
        trop (untrop x) = x
        @[simp]
        theorem Tropical.untrop_trop {R : Type u} (x : R) :
        untrop (trop x) = x

        Reinterpret x : R as an element of Tropical R. See Tropical.tropOrderIso for the order-preserving equivalence.

        Equations
        Instances For
          theorem Tropical.trop_eq_iff_eq_untrop {R : Type u} {x : R} {y : Tropical R} :
          trop x = y x = untrop y
          theorem Tropical.untrop_eq_iff_eq_trop {R : Type u} {x : Tropical R} {y : R} :
          untrop x = y x = trop y
          def Tropical.tropRec {R : Type u} {F : Tropical RSort v} (h : (X : R) → F (trop X)) (X : Tropical R) :
          F X

          Recursing on an x' : Tropical R is the same as recursing on an x : R reinterpreted as a term of Tropical R via trop x.

          Equations
          Instances For
            Equations
            instance Tropical.instLETropical {R : Type u} [LE R] :
            Equations
            @[simp]
            theorem Tropical.untrop_le_iff {R : Type u} [LE R] {x y : Tropical R} :
            instance Tropical.decidableLE {R : Type u} [LE R] [DecidableRel fun (x1 x2 : R) => x1 x2] :
            DecidableRel fun (x1 x2 : Tropical R) => x1 x2
            Equations
            instance Tropical.instLTTropical {R : Type u} [LT R] :
            Equations
            @[simp]
            theorem Tropical.untrop_lt_iff {R : Type u} [LT R] {x y : Tropical R} :
            untrop x < untrop y x < y
            instance Tropical.decidableLT {R : Type u} [LT R] [DecidableRel fun (x1 x2 : R) => x1 < x2] :
            DecidableRel fun (x1 x2 : Tropical R) => x1 < x2
            Equations

            Reinterpret x : R as an element of Tropical R, preserving the order.

            Equations
            Instances For
              instance Tropical.instTopTropical {R : Type u} [Top R] :
              Equations
              @[simp]
              theorem Tropical.untrop_zero {R : Type u} [Top R] :
              @[simp]
              theorem Tropical.trop_top {R : Type u} [Top R] :
              @[simp]
              theorem Tropical.trop_coe_ne_zero {R : Type u} (x : R) :
              trop x 0
              @[simp]
              theorem Tropical.zero_ne_trop_coe {R : Type u} (x : R) :
              0 trop x
              @[simp]
              theorem Tropical.le_zero {R : Type u} [LE R] [OrderTop R] (x : Tropical R) :
              x 0
              instance Tropical.instAdd {R : Type u} [LinearOrder R] :

              Tropical addition is the minimum of two underlying elements of R.

              Equations
              @[simp]
              theorem Tropical.untrop_add {R : Type u} [LinearOrder R] (x y : Tropical R) :
              @[simp]
              theorem Tropical.trop_min {R : Type u} [LinearOrder R] (x y : R) :
              trop (x y) = trop x + trop y
              @[simp]
              theorem Tropical.trop_inf {R : Type u} [LinearOrder R] (x y : R) :
              trop (x y) = trop x + trop y
              theorem Tropical.trop_add_def {R : Type u} [LinearOrder R] (x y : Tropical R) :
              x + y = trop (untrop x untrop y)
              @[simp]
              theorem Tropical.untrop_sup {R : Type u} [LinearOrder R] (x y : Tropical R) :
              @[simp]
              theorem Tropical.untrop_max {R : Type u} [LinearOrder R] (x y : Tropical R) :
              @[simp]
              theorem Tropical.min_eq_add {R : Type u} [LinearOrder R] :
              min = fun (x1 x2 : Tropical R) => x1 + x2
              @[simp]
              theorem Tropical.inf_eq_add {R : Type u} [LinearOrder R] :
              (fun (x1 x2 : Tropical R) => x1 x2) = fun (x1 x2 : Tropical R) => x1 + x2
              theorem Tropical.trop_max_def {R : Type u} [LinearOrder R] (x y : Tropical R) :
              theorem Tropical.trop_sup_def {R : Type u} [LinearOrder R] (x y : Tropical R) :
              @[simp]
              theorem Tropical.add_eq_left {R : Type u} [LinearOrder R] ⦃x y : Tropical R (h : x y) :
              x + y = x
              @[simp]
              theorem Tropical.add_eq_right {R : Type u} [LinearOrder R] ⦃x y : Tropical R (h : y x) :
              x + y = y
              theorem Tropical.add_eq_left_iff {R : Type u} [LinearOrder R] {x y : Tropical R} :
              x + y = x x y
              theorem Tropical.add_eq_right_iff {R : Type u} [LinearOrder R] {x y : Tropical R} :
              x + y = y y x
              theorem Tropical.add_self {R : Type u} [LinearOrder R] (x : Tropical R) :
              x + x = x
              theorem Tropical.add_eq_iff {R : Type u} [LinearOrder R] {x y z : Tropical R} :
              x + y = z x = z x y y = z y x
              @[simp]
              theorem Tropical.add_eq_zero_iff {R : Type u} [LinearOrder R] {a b : Tropical (WithTop R)} :
              a + b = 0 a = 0 b = 0
              instance Tropical.instMulOfAdd {R : Type u} [Add R] :

              Tropical multiplication is the addition in the underlying R.

              Equations
              @[simp]
              theorem Tropical.trop_add {R : Type u} [Add R] (x y : R) :
              trop (x + y) = trop x * trop y
              @[simp]
              theorem Tropical.untrop_mul {R : Type u} [Add R] (x y : Tropical R) :
              untrop (x * y) = untrop x + untrop y
              theorem Tropical.trop_mul_def {R : Type u} [Add R] (x y : Tropical R) :
              x * y = trop (untrop x + untrop y)
              @[simp]
              theorem Tropical.trop_zero {R : Type u} [Zero R] :
              trop 0 = 1
              @[simp]
              theorem Tropical.untrop_one {R : Type u} [Zero R] :
              untrop 1 = 0
              instance Tropical.instInvOfNeg {R : Type u} [Neg R] :
              Equations
              @[simp]
              theorem Tropical.untrop_inv {R : Type u} [Neg R] (x : Tropical R) :
              @[simp]
              theorem Tropical.untrop_div {R : Type u} [Sub R] (x y : Tropical R) :
              untrop (x / y) = untrop x - untrop y
              instance Tropical.instPowOfSMul {R : Type u} {α : Type u_1} [SMul α R] :
              Pow (Tropical R) α
              Equations
              @[simp]
              theorem Tropical.untrop_pow {R : Type u} {α : Type u_1} [SMul α R] (x : Tropical R) (n : α) :
              untrop (x ^ n) = n untrop x
              @[simp]
              theorem Tropical.trop_smul {R : Type u} {α : Type u_1} [SMul α R] (x : R) (n : α) :
              trop (n x) = trop x ^ n
              Equations
              @[simp]
              theorem Tropical.trop_nsmul {R : Type u} [AddMonoid R] (x : R) (n : ) :
              trop (n x) = trop x ^ n
              @[simp]
              theorem Tropical.untrop_zpow {R : Type u} [AddGroup R] (x : Tropical R) (n : ) :
              untrop (x ^ n) = n untrop x
              @[simp]
              theorem Tropical.trop_zsmul {R : Type u} [AddGroup R] (x : R) (n : ) :
              trop (n x) = trop x ^ n
              @[simp]
              theorem Tropical.add_pow {R : Type u} [LinearOrder R] [AddMonoid R] [AddLeftMono R] [AddRightMono R] (x y : Tropical R) (n : ) :
              (x + y) ^ n = x ^ n + y ^ n
              @[simp]
              theorem Tropical.succ_nsmul {R : Type u_1} [LinearOrder R] [OrderTop R] (x : Tropical R) (n : ) :
              (n + 1) x = x
              theorem Tropical.mul_eq_zero_iff {R : Type u_1} [LinearOrderedAddCommMonoid R] {a b : Tropical (WithTop R)} :
              a * b = 0 a = 0 b = 0