Documentation

Mathlib.AlgebraicGeometry.Properties

Basic properties of schemes #

We provide some basic properties of schemes

Main definition #

A scheme X is reduced if all 𝒪ₓ(U) are reduced.

Instances
    theorem AlgebraicGeometry.reduce_to_affine_global (P : {X : Scheme} → X.OpensProp) {X : Scheme} (U : X.Opens) (h₁ : ∀ (X : Scheme) (U : X.Opens), (∀ (x : U), ∃ (V : X.Opens) (_ : x V) (x : V U), P V)P U) (h₂ : ∀ (X Y : Scheme) (f : X Y) [inst : IsOpenImmersion f], ∃ (U : X.Opens) (V : Y.Opens), U = V = Scheme.Hom.opensRange f (P UP V)) (h₃ : ∀ (R : CommRingCat), P ) :
    P U

    To show that a statement P holds for all open subsets of all schemes, it suffices to show that

    1. In any scheme X, if P holds for an open cover of U, then P holds for U.
    2. For an open immerison f : X ⟶ Y, if P holds for the entire space of X, then P holds for the image of f.
    3. P holds for the entire space of an affine scheme.
    theorem AlgebraicGeometry.reduce_to_affine_nbhd (P : (X : Scheme) → X.toPresheafedSpaceProp) (h₁ : ∀ (R : CommRingCat) (x : (Spec R).toPresheafedSpace), P (Spec R) x) (h₂ : ∀ {X Y : Scheme} (f : X Y) [inst : IsOpenImmersion f] (x : X.toPresheafedSpace), P X xP Y ((CategoryTheory.ConcreteCategory.hom f.base) x)) (X : Scheme) (x : X.toPresheafedSpace) :
    P X x
    theorem AlgebraicGeometry.eq_zero_of_basicOpen_eq_bot {X : Scheme} [hX : IsReduced X] {U : X.Opens} (s : (X.presheaf.obj (Opposite.op U))) (hs : X.basicOpen s = ) :
    s = 0
    @[simp]

    A scheme X is integral if its is nonempty, and 𝒪ₓ(U) is an integral domain for each U ≠ ∅.

    Instances