Representability of schemes is a local property #
In this file we prove that a sheaf of types F
on Sch
is representable if it is
locally representable.
Main result #
AlgebraicGeometry.Scheme.LocalRepresentability.isRepresentable
: Suppose- F is a
Type u
-valued sheaf onSch
with respect to the Zariski topology - X : ι → Sch is a family of schemes
- f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
- f is jointly surjective
Then
F
is representable.- F is a
References #
noncomputable def
AlgebraicGeometry.Scheme.LocalRepresentability.glueData
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
:
We get a family of gluing data by taking U i = X i
and V i j = (hf i).rep.pullback (f j)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_U
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(a✝ : ι)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t'
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i j k : ι)
:
(glueData hf).t' i j k = ⋯.lift₃ (f k) (f i) (CategoryTheory.Functor.relativelyRepresentable.pullback₃.p₂ ⋯ (f j) (f k))
(CategoryTheory.Functor.relativelyRepresentable.pullback₃.p₃ ⋯ (f j) (f k))
(CategoryTheory.Functor.relativelyRepresentable.pullback₃.p₁ ⋯ (f j) (f k)) ⋯ ⋯
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i j : ι)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_V
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(x✝ : ι × ι)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_J
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
:
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_f
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i j : ι)
:
noncomputable def
AlgebraicGeometry.Scheme.LocalRepresentability.toGlued
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i : ι)
:
The map from X i
to the glued scheme (glueData hf).glued
Equations
Instances For
instance
AlgebraicGeometry.Scheme.LocalRepresentability.instIsOpenImmersionToGlued
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i : ι)
:
IsOpenImmersion (toGlued hf i)
noncomputable def
AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
:
The map from the glued scheme (glueData hf).glued
, treated as a sheaf, to F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i : ι)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map (toGlued hf i)) (yonedaGluedToSheaf hf).val = f i
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf_assoc
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(i : ι)
{Z : CategoryTheory.Functor Schemeᵒᵖ (Type u)}
(h : F.val ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
{i : ι}
:
(yonedaGluedToSheaf hf).val.app (Opposite.op (X i)) (toGlued hf i) = CategoryTheory.yonedaEquiv (f i)
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_comp
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
{V U : Scheme}
(γ : V ⟶ U)
(α : U ⟶ (glueData hf).glued)
:
(yonedaGluedToSheaf hf).val.app (Opposite.op V) (CategoryTheory.CategoryStruct.comp γ α) = F.val.map γ.op ((yonedaGluedToSheaf hf).val.app (Opposite.op U) α)
instance
AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomObjForgetTypeYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOpposite
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
[CategoryTheory.Presheaf.IsLocallySurjective zariskiTopology (CategoryTheory.Limits.Sigma.desc f)]
:
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.comp_toGlued_eq
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
{U : Scheme}
{i j : ι}
(a : U ⟶ X i)
(b : U ⟶ X j)
(h :
CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map a) (f i) = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map b) (f j))
:
CategoryTheory.CategoryStruct.comp a (toGlued hf i) = CategoryTheory.CategoryStruct.comp b (toGlued hf j)
@[simp]
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.glueData_openCover_map
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
(j : ι)
:
instance
AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomObjForgetTypeYonedaGluedToSheaf
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
:
instance
AlgebraicGeometry.Scheme.LocalRepresentability.instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
[CategoryTheory.Presheaf.IsLocallySurjective zariskiTopology (CategoryTheory.Limits.Sigma.desc f)]
:
noncomputable def
AlgebraicGeometry.Scheme.LocalRepresentability.yonedaIsoSheaf
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
[CategoryTheory.Presheaf.IsLocallySurjective zariskiTopology (CategoryTheory.Limits.Sigma.desc f)]
:
The isomorphism between yoneda.obj (glueData hf).glued
and F
.
This implies that F
is representable.
Equations
Instances For
noncomputable def
AlgebraicGeometry.Scheme.LocalRepresentability.representableBy
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
[CategoryTheory.Presheaf.IsLocallySurjective zariskiTopology (CategoryTheory.Limits.Sigma.desc f)]
:
F.val.RepresentableBy (glueData hf).glued
Suppose
- F is a
Type u
-valued sheaf onSch
with respect to the Zariski topology - X : ι → Sch is a family of schemes
- f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
- f is jointly surjective
Then F
is representable, and the representing object is glued from the X i
s
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicGeometry.Scheme.LocalRepresentability.isRepresentable
{F : CategoryTheory.Sheaf zariskiTopology (Type u)}
{ι : Type u}
{X : ι → Scheme}
{f : (i : ι) → CategoryTheory.yoneda.obj (X i) ⟶ F.val}
(hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i))
[CategoryTheory.Presheaf.IsLocallySurjective zariskiTopology (CategoryTheory.Limits.Sigma.desc f)]
:
Suppose
- F is a
Type u
-valued sheaf onSch
with respect to the Zariski topology - X : ι → Sch is a family of schemes
- f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
- f is jointly surjective
Then F
is representable.