Documentation

Mathlib.AlgebraicGeometry.Sites.Representability

Representability of schemes is a local property #

In this file we prove that a sheaf of types F on Sch is representable if it is locally representable.

Main result #

References #

noncomputable def AlgebraicGeometry.Scheme.LocalRepresentability.glueData {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) :

We get a family of gluing data by taking U i = X i and V i j = (hf i).rep.pullback (f j).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_U {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (a✝ : ι) :
    (glueData hf).U a✝ = X a✝
    @[simp]
    theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i j : ι) :
    (glueData hf).t i j = .symmetry
    @[simp]
    theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_V {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (x✝ : ι × ι) :
    (glueData hf).V x✝ = match x✝ with | (i, j) => .pullback (f j)
    @[simp]
    theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_J {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) :
    (glueData hf).J = ι
    @[simp]
    theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_f {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i j : ι) :
    (glueData hf).f i j = .fst' (f j)
    noncomputable def AlgebraicGeometry.Scheme.LocalRepresentability.toGlued {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i : ι) :
    X i (glueData hf).glued

    The map from X i to the glued scheme (glueData hf).glued

    Equations
    Instances For

      The map from the glued scheme (glueData hf).glued, treated as a sheaf, to F.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]

        Suppose

        • F is a Type u-valued sheaf on Sch with respect to the Zariski topology
        • X : ι → Sch is a family of schemes
        • f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
        • f is jointly surjective

        Then F is representable, and the representing object is glued from the X is

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Suppose

          • F is a Type u-valued sheaf on Sch with respect to the Zariski topology
          • X : ι → Sch is a family of schemes
          • f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
          • f is jointly surjective

          Then F is representable.

          Stacks Tag 01JJ