Documentation

Mathlib.AlgebraicTopology.SimplicialSet.AnodyneExtensions.IsUniquelyCodimOneFace

Simplices that are uniquely codimensional one faces #

Let X be a simplicial set. If x : X _⦋d⦌ and y : X _⦋d + 1⦌, we say that x is uniquely a 1-codimensional face of y if there exists a unique i : Fin (d + 2) such that X.δ i y = x. In this file, we extend this to a predicate IsUniquelyCodimOneFace involving two terms in the type X.S of simplices of X. This is used in the file AlgebraicTopology.SimplicialSet.AnodyneExtensions.Pairing for the study of strong (inner) anodyne extensions.

References #

The property that a simplex is uniquely a 1-codimensional face of another simplex

Equations
Instances For
    theorem SSet.S.IsUniquelyCodimOneFace.iff {X : SSet} {d : } (x : X.obj (Opposite.op (SimplexCategory.mk d))) (y : X.obj (Opposite.op (SimplexCategory.mk (d + 1)))) :
    { dim := d, simplex := x }.IsUniquelyCodimOneFace { dim := d + 1, simplex := y } ∃! i : Fin (d + 2), CategoryTheory.SimplicialObject.δ X i y = x
    theorem SSet.S.IsUniquelyCodimOneFace.cast {X : SSet} {x y : X.S} (hxy : x.IsUniquelyCodimOneFace y) {d : } (hd : x.dim = d) :
    noncomputable def SSet.S.IsUniquelyCodimOneFace.index {X : SSet} {x y : X.S} (hxy : x.IsUniquelyCodimOneFace y) {d : } (hd : x.dim = d) :
    Fin (d + 2)

    When a d-dimensional simplex x is a 1-codimensional face of y, this is the only i : Fin (d + 2), such that X.δ i y = x (with an abuse of notation: see δ_index and δ_eq_iff for well typed statements).

    Equations
    Instances For
      theorem SSet.S.IsUniquelyCodimOneFace.δ_eq_iff {X : SSet} {x y : X.S} (hxy : x.IsUniquelyCodimOneFace y) {d : } (hd : x.dim = d) (i : Fin (d + 2)) :