Simplices that are uniquely codimensional one faces #
Let X be a simplicial set. If x : X _⦋d⦌ and y : X _⦋d + 1⦌,
we say that x is uniquely a 1-codimensional face of y if there
exists a unique i : Fin (d + 2) such that X.δ i y = x. In this file,
we extend this to a predicate IsUniquelyCodimOneFace involving two terms
in the type X.S of simplices of X. This is used in the
file AlgebraicTopology.SimplicialSet.AnodyneExtensions.Pairing for the
study of strong (inner) anodyne extensions.
References #
The property that a simplex is uniquely a 1-codimensional face of another simplex
Equations
Instances For
theorem
SSet.S.IsUniquelyCodimOneFace.iff
{X : SSet}
{d : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk d)))
(y : X.obj (Opposite.op (SimplexCategory.mk (d + 1))))
:
theorem
SSet.S.IsUniquelyCodimOneFace.dim_eq
{X : SSet}
{x y : X.S}
(hxy : x.IsUniquelyCodimOneFace y)
:
theorem
SSet.S.IsUniquelyCodimOneFace.cast
{X : SSet}
{x y : X.S}
(hxy : x.IsUniquelyCodimOneFace y)
{d : ℕ}
(hd : x.dim = d)
:
(x.cast hd).IsUniquelyCodimOneFace (y.cast ⋯)
noncomputable def
SSet.S.IsUniquelyCodimOneFace.index
{X : SSet}
{x y : X.S}
(hxy : x.IsUniquelyCodimOneFace y)
{d : ℕ}
(hd : x.dim = d)
:
When a d-dimensional simplex x is a 1-codimensional face of y, this is
the only i : Fin (d + 2), such that X.δ i y = x (with an abuse of notation:
see δ_index and δ_eq_iff for well typed statements).
Instances For
theorem
SSet.S.IsUniquelyCodimOneFace.δ_index
{X : SSet}
{x y : X.S}
(hxy : x.IsUniquelyCodimOneFace y)
{d : ℕ}
(hd : x.dim = d)
: